These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29218150)

  • 1. Ammonia decomposition catalysis using non-stoichiometric lithium imide.
    Makepeace JW; Wood TJ; Hunter HMA; Jones MO; David WIF
    Chem Sci; 2015 Jul; 6(7):3805-3815. PubMed ID: 29218150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonia decomposition catalysis using lithium-calcium imide.
    Makepeace JW; Hunter HM; Wood TJ; Smith RI; Murray CA; David WI
    Faraday Discuss; 2016 Jul; 188():525-44. PubMed ID: 27092374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk phase behavior of lithium imide-metal nitride ammonia decomposition catalysts.
    Makepeace JW; Wood TJ; Marks PL; Smith RI; Murray CA; David WIF
    Phys Chem Chem Phys; 2018 Sep; 20(35):22689-22697. PubMed ID: 30137070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopic studies of the ammonia decomposition reaction using lithium imide catalyst.
    Wood TJ; Makepeace JW; David WI
    Phys Chem Chem Phys; 2017 Feb; 19(6):4719-4724. PubMed ID: 28128832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia Decomposition with Manganese Nitride-Calcium Imide Composites as Efficient Catalysts.
    Yu P; Guo J; Liu L; Wang P; Wu G; Chang F; Chen P
    ChemSusChem; 2016 Feb; 9(4):364-9. PubMed ID: 26914173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition.
    Guo J; Wang P; Wu G; Wu A; Hu D; Xiong Z; Wang J; Yu P; Chang F; Chen Z; Chen P
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):2950-4. PubMed ID: 25604896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production from ammonia using sodium amide.
    David WI; Makepeace JW; Callear SK; Hunter HM; Taylor JD; Wood TJ; Jones MO
    J Am Chem Soc; 2014 Sep; 136(38):13082-5. PubMed ID: 24972299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen storage and ionic mobility in amide-halide systems.
    Anderson PA; Chater PA; Hewett DR; Slater PR
    Faraday Discuss; 2011; 151():271-84; discussion 285-95. PubMed ID: 22455075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction.
    David WI; Jones MO; Gregory DH; Jewell CM; Johnson SR; Walton A; Edwards PP
    J Am Chem Soc; 2007 Feb; 129(6):1594-601. PubMed ID: 17243680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compositional flexibility in Li-N-H materials: implications for ammonia catalysis and hydrogen storage.
    Makepeace JW; Brittain JM; Sukhwani Manghnani A; Murray CA; Wood TJ; David WIF
    Phys Chem Chem Phys; 2021 Jul; 23(28):15091-15100. PubMed ID: 34232235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic enantioselective protonation of lithium enolates with chiral imides.
    Yanagisawa A; Watanabe T; Kikuchi T; Yamamoto H
    J Org Chem; 2000 May; 65(10):2979-83. PubMed ID: 10814187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Thermal Ammonia Decomposition for Hydrogen Production over Carbon Films under Low-Temperature Plasma-In-Situ FTIR Studies.
    Moszczyńska J; Liu X; Wiśniewski M
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron diffraction and gravimetric study of the iron nitriding reaction under ammonia decomposition conditions.
    Wood TJ; Makepeace JW; David WIF
    Phys Chem Chem Phys; 2017 Oct; 19(40):27859-27865. PubMed ID: 28991292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of lithium amide to lithium imide transition via mechanical activation.
    Markmaitree T; Ren R; Shaw LL
    J Phys Chem B; 2006 Oct; 110(41):20710-8. PubMed ID: 17034263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ X-ray powder diffraction studies of hydrogen storage and release in the Li-N-H system.
    Makepeace JW; Jones MO; Callear SK; Edwards PP; David WI
    Phys Chem Chem Phys; 2014 Mar; 16(9):4061-70. PubMed ID: 24449151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts.
    Ng PF; Li L; Wang S; Zhu Z; Lu G; Yan Z
    Environ Sci Technol; 2007 May; 41(10):3758-62. PubMed ID: 17547209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotopic studies of the ammonia decomposition reaction mediated by sodium amide.
    Wood TJ; Makepeace JW; Hunter HM; Jones MO; David WI
    Phys Chem Chem Phys; 2015 Sep; 17(35):22999-3006. PubMed ID: 26271016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition.
    McCullough K; Chiang PH; Jimenez JD; Lauterbach JA
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition.
    Zheng W; Cotter TP; Kaghazchi P; Jacob T; Frank B; Schlichte K; Zhang W; Su DS; Schüth F; Schlögl R
    J Am Chem Soc; 2013 Mar; 135(9):3458-64. PubMed ID: 23350903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-SiO
    Hu XC; Wang WW; Gu YQ; Jin Z; Song QS; Jia CJ
    Chempluschem; 2017 Mar; 82(3):368-375. PubMed ID: 31962031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.