BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29218324)

  • 1.
    Fantuzzo JA; Mirabella VR; Hamod AH; Hart RP; Zahn JD; Pang ZP
    eNeuro; 2017; 4(6):. PubMed ID: 29218324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Image Analysis of Lipid-Droplet-Bound Mitochondria.
    Miller N; Wolf D; Alsabeeh N; Mahdaviani K; Segawa M; Liesa M; Shirihai OS
    Methods Mol Biol; 2021; 2276():285-303. PubMed ID: 34060050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DetecTiff: a novel image analysis routine for high-content screening microscopy.
    Gilbert DF; Meinhof T; Pepperkok R; Runz H
    J Biomol Screen; 2009 Sep; 14(8):944-55. PubMed ID: 19641223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying co-cultured cell phenotypes in high-throughput using pixel-based classification.
    Logan DJ; Shan J; Bhatia SN; Carpenter AE
    Methods; 2016 Mar; 96():6-11. PubMed ID: 26687239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated criteria-based selection and analysis of fluorescent synaptic puncta.
    Bergsman JB; Krueger SR; Fitzsimonds RM
    J Neurosci Methods; 2006 Apr; 152(1-2):32-9. PubMed ID: 16198002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative analytic pipeline for evaluating neuronal activities by high-throughput synaptic vesicle imaging.
    Fan J; Xia X; Li Y; Dy JG; Wong ST
    Neuroimage; 2012 Sep; 62(3):2040-54. PubMed ID: 22732566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality Control for High-Throughput Imaging Experiments Using Machine Learning in Cellprofiler.
    Bray MA; Carpenter AE
    Methods Mol Biol; 2018; 1683():89-112. PubMed ID: 29082489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms.
    Kandaswamy U; Rotman Z; Watt D; Schillebeeckx I; Cavalli V; Klyachko VA
    J Neurosci Methods; 2013 Feb; 213(1):84-98. PubMed ID: 23261652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell-level quality control workflow for high-throughput image analysis.
    Qiu M; Zhou B; Lo F; Cook S; Chyba J; Quackenbush D; Matzen J; Li Z; Mak PA; Chen K; Zhou Y
    BMC Bioinformatics; 2020 Jul; 21(1):280. PubMed ID: 32615917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning context cues for synapse segmentation.
    Becker C; Ali K; Knott G; Fua P
    IEEE Trans Med Imaging; 2013 Oct; 32(10):1864-77. PubMed ID: 23771317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer vision for high content screening.
    Kraus OZ; Frey BJ
    Crit Rev Biochem Mol Biol; 2016; 51(2):102-9. PubMed ID: 26806341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HCS Methodology for Helping in Lab Scale Image-Based Assays.
    Soriano J; Mata G; Megias D
    Methods Mol Biol; 2019; 2040():331-356. PubMed ID: 31432486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.
    Chen W; Wong C; Vosburgh E; Levine AJ; Foran DJ; Xu EY
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25046278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated image analysis for high-content screening and analysis.
    Shariff A; Kangas J; Coelho LP; Quinn S; Murphy RF
    J Biomol Screen; 2010 Aug; 15(7):726-34. PubMed ID: 20488979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis.
    Rodríguez-Arribas M; Pizarro-Estrella E; Gómez-Sánchez R; Yakhine-Diop SM; Gragera-Hidalgo A; Cristo A; Bravo-San Pedro JM; González-Polo RA; Fuentes JM
    J Lab Autom; 2016 Apr; 21(2):246-59. PubMed ID: 26303944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Top-down machine learning approach for high-throughput single-molecule analysis.
    White DS; Goldschen-Ohm MP; Goldsmith RH; Chanda B
    Elife; 2020 Apr; 9():. PubMed ID: 32267232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spotsizer: High-throughput quantitative analysis of microbial growth.
    Bischof L; Převorovský M; Rallis C; Jeffares DC; Arzhaeva Y; Bähler J
    Biotechniques; 2016 Oct; 61(4):191-201. PubMed ID: 27712582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.