These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29218487)

  • 1. 3D true-phase polarity recovery with independent phase estimation using three-tier stacks based region growing (3D-TRIPS).
    Liu H; Wilson GJ; Balu N; Maki JH; Hippe DS; Wu W; Watase H; Wang J; Gunn ML; Yuan C
    MAGMA; 2018 Feb; 31(1):87-99. PubMed ID: 29218487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of 3D phase-sensitive inversion-recovery and 2D inversion-recovery MRI at 3.0 T for the assessment of late gadolinium enhancement in patients with hypertrophic cardiomyopathy.
    Morita K; Utsunomiya D; Oda S; Komi M; Namimoto T; Hirai T; Hashida M; Takashio S; Yamamuro M; Yamashita Y
    Acad Radiol; 2013 Jun; 20(6):752-7. PubMed ID: 23473721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional phase-sensitive inversion recovery sequencing in the evaluation of left ventricular myocardial scars in ischemic and non-ischemic cardiomyopathy: comparison to three-dimensional inversion recovery sequencing.
    Kido T; Kido T; Nakamura M; Kawaguchi N; Nishiyama Y; Ogimoto A; Miyagawa M; Mochizuki T
    Eur J Radiol; 2014 Dec; 83(12):2159-2166. PubMed ID: 25311877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late gadolinium enhancement cardiac imaging on a 3T scanner with parallel RF transmission technique: prospective comparison of 3D-PSIR and 3D-IR.
    Schultz A; Caspar T; Schaeffer M; Labani A; Jeung MY; El Ghannudi S; Roy C; Ohana M
    Eur Radiol; 2016 Jun; 26(6):1547-55. PubMed ID: 26373760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging.
    Milotta G; Munoz C; Kunze KP; Neji R; Figliozzi S; Chiribiri A; Hajhosseiny R; Masci PG; Prieto C; Botnar RM
    J Cardiovasc Magn Reson; 2021 May; 23(1):62. PubMed ID: 34024276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of left ventricular myocardial scar in coronary artery disease by a three-dimensional MR imaging technique.
    Yin G; Zhao S; Lu M; Ma N; Zuehlsdorff S; Cheng H; Jiang S; Zhao T; Zhang Y; An J; Lv C; He Z
    J Magn Reson Imaging; 2013 Jul; 38(1):72-9. PubMed ID: 23225643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of late gadolinium enhancement in nonischemic cardiomyopathy: comparison of a fast Phase-Sensitive Inversion Recovery Sequence (PSIR) and a conventional segmented 2D gradient echo recall (GRE) sequence--preliminary findings.
    Elgeti T; Abdel-Aty H; Wagner M; Busjahn A; Schulz-Menger J; Kivelitz D; Dietz R; Hamm B
    Invest Radiol; 2007 Oct; 42(10):671-5. PubMed ID: 17984763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography.
    Ginami G; Neji R; Rashid I; Chiribiri A; Ismail TF; Botnar RM; Prieto C
    J Cardiovasc Magn Reson; 2017 Nov; 19(1):94. PubMed ID: 29178893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-breathing combined three-dimensional phase sensitive late gadolinium enhancement and T1 mapping for myocardial tissue characterization.
    Weingärtner S; Akçakaya M; Roujol S; Basha T; Tschabrunn C; Berg S; Anter E; Nezafat R
    Magn Reson Med; 2015 Oct; 74(4):1032-41. PubMed ID: 25324205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric late gadolinium-enhanced myocardial imaging with retrospective inversion time selection.
    Kecskemeti S; Johnson K; François CJ; Schiebler ML; Unal O
    J Magn Reson Imaging; 2013 Nov; 38(5):1276-82. PubMed ID: 23389851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Basic examination for three-dimensional phase-sensitive inversion recovery (3D PSIR) method by late gadolinium enhancement of non-breath-hold cardiac magnetic resonance image].
    Suzuki Y; Teraoka K; Kawade M; Koizumi K; Komori Y; Zuehlsdorff S
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2011; 67(1):41-50. PubMed ID: 21301170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D late gadolinium enhanced cardiovascular MR with CENTRA-PLUS profile/view ordering: Feasibility of right ventricular myocardial damage assessment using a swine animal model.
    Kawaji K; Tanaka A; Patel MB; Wang H; Maffessanti F; Ota T; Patel AR
    Magn Reson Imaging; 2017 Jun; 39():7-14. PubMed ID: 28131907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid single-breath-hold 3D late gadolinium enhancement cardiac MRI using a stack-of-spirals acquisition.
    Shin T; Lustig M; Nishimura DG; Hu BS
    J Magn Reson Imaging; 2014 Dec; 40(6):1496-502. PubMed ID: 24243575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging.
    Varga-Szemes A; van der Geest RJ; Schoepf UJ; Spottiswoode BS; De Cecco CN; Muscogiuri G; Wichmann JL; Mangold S; Fuller SR; Maurovich-Horvat P; Merkely B; Litwin SE; Vliegenthart R; Suranyi P
    Eur Radiol; 2017 Aug; 27(8):3235-3243. PubMed ID: 28050692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial motion-corrected phase-sensitive inversion recovery late gadolinium enhancement in free breathing paediatric patients: a comparison with single-shot coherent gradient echo ("TrueFISP") phase-sensitive inversion recovery.
    Xie LJ; Xu R; Xu ZY; Li XS; Zhou XY; Bi XM; Mu JS; Fan HM; Xu HY; Guo YK
    Clin Radiol; 2021 Jun; 76(6):471.e17-471.e25. PubMed ID: 33663913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility study of a single breath-hold, 3D mDIXON pulse sequence for late gadolinium enhancement imaging of ischemic scar.
    Foley JRJ; Fent GJ; Garg P; Broadbent DA; Dobson LE; Chew PG; Brown LAE; Swoboda PP; Plein S; Higgins DM; Greenwood JP
    J Magn Reson Imaging; 2019 May; 49(5):1437-1445. PubMed ID: 30597661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic multi-contrast late gadolinium enhancement imaging using post-contrast magnetic resonance fingerprinting.
    Rashid I; Al-Kindi S; Rajagopalan V; Walker J; Rajagopalan S; Seiberlich N; Hamilton JI
    NMR Biomed; 2024 Jan; 37(1):e5043. PubMed ID: 37740596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new automatic algorithm for quantification of myocardial infarction imaged by late gadolinium enhancement cardiovascular magnetic resonance: experimental validation and comparison to expert delineations in multi-center, multi-vendor patient data.
    Engblom H; Tufvesson J; Jablonowski R; Carlsson M; Aletras AH; Hoffmann P; Jacquier A; Kober F; Metzler B; Erlinge D; Atar D; Arheden H; Heiberg E
    J Cardiovasc Magn Reson; 2016 May; 18(1):27. PubMed ID: 27145749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical performance of high-resolution late gadolinium enhancement imaging with compressed sensing.
    Basha TA; Akçakaya M; Liew C; Tsao CW; Delling FN; Addae G; Ngo L; Manning WJ; Nezafat R
    J Magn Reson Imaging; 2017 Dec; 46(6):1829-1838. PubMed ID: 28301075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of phase-sensitive versus magnitude reconstructed inversion recovery imaging for the assessment of myocardial infarction in mice with a clinical magnetic resonance scanner.
    Wildgruber M; Settles M; Kosanke K; Bielicki I; Ntziachristos V; Rummeny EJ; Botnar RM; Huber AM
    J Magn Reson Imaging; 2012 Dec; 36(6):1372-82. PubMed ID: 22972713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.