BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29218516)

  • 1. GLUT Characterization Using Frog Xenopus laevis Oocytes.
    Long W; O'Neill D; Cheeseman CI
    Methods Mol Biol; 2018; 1713():45-55. PubMed ID: 29218516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse GLUT9: evidences for a urate uniporter.
    Bibert S; Hess SK; Firsov D; Thorens B; Geering K; Horisberger JD; Bonny O
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F612-9. PubMed ID: 19587147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system.
    Clémençon B; Lüscher BP; Fine M; Baumann MU; Surbek DV; Bonny O; Hediger MA
    PLoS One; 2014; 9(10):e108852. PubMed ID: 25286413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reassessment of GLUT7 and GLUT9 as Putative Fructose and Glucose Transporters.
    Ebert K; Ludwig M; Geillinger KE; Schoberth GC; Essenwanger J; Stolz J; Daniel H; Witt H
    J Membr Biol; 2017 Apr; 250(2):171-182. PubMed ID: 28083649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.
    Hilbers F; Poulsen H
    Methods Mol Biol; 2016; 1377():305-18. PubMed ID: 26695042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses.
    Witkowska K; Smith KM; Yao SY; Ng AM; O'Neill D; Karpinski E; Young JD; Cheeseman CI
    Am J Physiol Renal Physiol; 2012 Aug; 303(4):F527-39. PubMed ID: 22647630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential targeting of glucose transporter isoforms heterologously expressed in Xenopus oocytes.
    Thomas HM; Takeda J; Gould GW
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):707-15. PubMed ID: 8457198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids.
    Gauer JS; Tumova S; Lippiat JD; Kerimi A; Williamson G
    Biochem Pharmacol; 2018 Jun; 152():11-20. PubMed ID: 29548810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of the human facilitative glucose transporter 12 (GLUT12) by electrophysiological methods.
    Pujol-Giménez J; Pérez A; Reyes AM; Loo DD; Lostao MP
    Am J Physiol Cell Physiol; 2015 Jun; 308(12):C1008-22. PubMed ID: 25855082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenopus laevis Oocytes.
    Bröer S
    Methods Mol Biol; 2010; 637():295-310. PubMed ID: 20419442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patch-Clamp and Perfusion Techniques to Study Ion Channels Expressed in
    Zhang G; Cui J
    Cold Spring Harb Protoc; 2018 Apr; 2018(4):pdb.prot099051. PubMed ID: 29382809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Western Blot Protocol for Detection of Proteins Heterologously Expressed in Xenopus laevis Oocytes.
    Jørgensen ME; Nour-Eldin HH; Halkier BA
    Methods Mol Biol; 2016; 1405():99-107. PubMed ID: 26843169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms.
    Gould GW; Thomas HM; Jess TJ; Bell GI
    Biochemistry; 1991 May; 30(21):5139-45. PubMed ID: 2036379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization.
    Morita H; Yano Y; Niswender KD; May JM; Whitesell RR; Wu L; Printz RL; Granner DK; Magnuson MA; Powers AC
    J Clin Invest; 1994 Oct; 94(4):1373-82. PubMed ID: 7929812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus laevis Oocytes.
    Bröer S
    Methods Mol Biol; 2003; 227():245-58. PubMed ID: 12824652
    [No Abstract]   [Full Text] [Related]  

  • 16. Using Xenopus laevis Oocytes to Functionally Characterize Plant Transporters.
    Pike S; Matthes MS; McSteen P; Gassmann W
    Curr Protoc Plant Biol; 2019 Mar; 4(1):e20087. PubMed ID: 30707001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using in vivo imaging to measure RNA mobility in Xenopus laevis oocytes.
    Powrie EA; Ciocanel V; Kreiling JA; Gagnon JA; Sandstede B; Mowry KL
    Methods; 2016 Apr; 98():60-65. PubMed ID: 26546269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous transport systems in the Xenopus laevis oocyte plasma membrane.
    Sobczak K; Bangel-Ruland N; Leier G; Weber WM
    Methods; 2010 May; 51(1):183-9. PubMed ID: 19963061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7).
    Manolescu A; Salas-Burgos AM; Fischbarg J; Cheeseman CI
    J Biol Chem; 2005 Dec; 280(52):42978-83. PubMed ID: 16186102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for studying voltage-gated sodium channels in heterologous expression systems.
    Dice MS; Kearl T; Ruben PC
    Methods Mol Med; 2006; 129():163-85. PubMed ID: 17085811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.