These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29218521)

  • 1. Applying Microfluidic Systems to Study Effects of Glucose at Single-Cell Level.
    Welkenhuysen N; Adiels CB; Goksör M; Hohmann S
    Methods Mol Biol; 2018; 1713():109-121. PubMed ID: 29218521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying Glycolytic Oscillations in Individual Yeast Cells by Combining Fluorescence Microscopy with Microfluidics and Optical Tweezers.
    Gustavsson AK; Banaeiyan AA; van Niekerk DD; Snoep JL; Adiels CB; Goksör M
    Curr Protoc Cell Biol; 2019 Mar; 82(1):e70. PubMed ID: 30329225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic platforms for single-cell protein analysis.
    Liu Y; Singh AK
    J Lab Autom; 2013 Dec; 18(6):446-54. PubMed ID: 23821679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in microfluidics for cell studies.
    Xiong B; Ren K; Shu Y; Chen Y; Shen B; Wu H
    Adv Mater; 2014 Aug; 26(31):5525-32. PubMed ID: 24536032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell analysis in biotechnology, systems biology, and biocatalysis.
    Fritzsch FS; Dusny C; Frick O; Schmid A
    Annu Rev Chem Biomol Eng; 2012; 3():129-55. PubMed ID: 22468600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes.
    Eriksson E; Enger J; Nordlander B; Erjavec N; Ramser K; Goksör M; Hohmann S; Nyström T; Hanstorp D
    Lab Chip; 2007 Jan; 7(1):71-6. PubMed ID: 17180207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes.
    Probst C; Grünberger A; Wiechert W; Kohlheyer D
    J Microbiol Methods; 2013 Dec; 95(3):470-6. PubMed ID: 24041615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.
    Wang K; Zhao Y; Chen D; Huang C; Fan B; Long R; Hsieh CH; Wang J; Wu MH; Chen J
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic systems for live cell imaging.
    Lee P; Gaige T; Hung P
    Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions.
    Gross P; Farge G; Peterman EJ; Wuite GJ
    Methods Enzymol; 2010; 475():427-53. PubMed ID: 20627167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System.
    Pilát Z; Jonáš A; Ježek J; Zemánek P
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-destructive handling of individual chromatin fibers isolated from single cells in a microfluidic device utilizing an optically driven microtool.
    Oana H; Nishikawa K; Matsuhara H; Yamamoto A; Yamamoto TG; Haraguchi T; Hiraoka Y; Washizu M
    Lab Chip; 2014 Feb; 14(4):696-704. PubMed ID: 24356711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
    Wang X; Chen S; Kong M; Wang Z; Costa KD; Li RA; Sun D
    Lab Chip; 2011 Nov; 11(21):3656-62. PubMed ID: 21918752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis.
    Lo SJ; Yao DJ
    Int J Mol Sci; 2015 Jul; 16(8):16763-77. PubMed ID: 26213918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.