These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29218592)

  • 21. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect.
    Song W; Battista J; Van Dyk J
    Med Phys; 2004 Nov; 31(11):3034-45. PubMed ID: 15587657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Optimal Radiation Dose to Induce Robust Systemic Anti-Tumor Immunity.
    Poleszczuk J; Enderling H
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30380596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene.
    Pietras RJ; Poen JC; Gallardo D; Wongvipat PN; Lee HJ; Slamon DJ
    Cancer Res; 1999 Mar; 59(6):1347-55. PubMed ID: 10096569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal fractionation in radiotherapy for non-small cell lung cancer--a modelling approach.
    Lindblom E; Dasu A; Toma-Dasu I
    Acta Oncol; 2015; 54(9):1592-8. PubMed ID: 26217986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery.
    Kirkpatrick JP; Meyer JJ; Marks LB
    Semin Radiat Oncol; 2008 Oct; 18(4):240-3. PubMed ID: 18725110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: resolution of the linear-quadratic model.
    Bodgi L; Foray N
    Int J Radiat Biol; 2016; 92(3):117-31. PubMed ID: 26907628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data.
    Chvetsov AV; Yartsev S; Schwartz JL; Mayr N
    Med Phys; 2014 Jun; 41(6):064101. PubMed ID: 24877843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered fractionation in radiotherapy: from radiobiological rationale to therapeutic gain.
    Marcu LG
    Cancer Treat Rev; 2010 Dec; 36(8):606-14. PubMed ID: 20494524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic Models for Predicting Cervical Cancer Response to Radiation Therapy on Individual Basis Using Tumor Regression Measured In Vivo With Volumetric Imaging.
    Belfatto A; Riboldi M; Ciardo D; Cattani F; Cecconi A; Lazzari R; Jereczek-Fossa BA; Orecchia R; Baroni G; Cerveri P
    Technol Cancer Res Treat; 2016 Feb; 15(1):146-58. PubMed ID: 25759423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology.
    Yang Y; Xing L
    Med Phys; 2005 Dec; 32(12):3666-77. PubMed ID: 16475766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes.
    López E; Guerrero R; Núñez MI; del Moral R; Villalobos M; Martínez-Galán J; Valenzuela MT; Muñoz-Gámez JA; Oliver FJ; Martín-Oliva D; Ruiz de Almodóvar JM
    Breast Cancer Res; 2005; 7(5):R690-8. PubMed ID: 16168114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The consequence of day-to-day stochastic dose deviation from the planned dose in fractionated radiation therapy.
    Paul S; Roy PK
    Math Biosci Eng; 2016 Feb; 13(1):159-70. PubMed ID: 26776265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A feasibility study: Selection of a personalized radiotherapy fractionation schedule using spatiotemporal optimization.
    Kim M; Stewart RD; Phillips MH
    Med Phys; 2015 Nov; 42(11):6671-8. PubMed ID: 26520757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative assessment of radiation dose and fractionation effects on normal tissue by utilizing a novel lung fibrosis index model.
    Zhou C; Jones B; Moustafa M; Schwager C; Bauer J; Yang B; Cao L; Jia M; Mairani A; Chen M; Chen L; Debus J; Abdollahi A
    Radiat Oncol; 2017 Nov; 12(1):172. PubMed ID: 29116014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bystander effects and their implications for clinical radiation therapy: Insights from multiscale in silico experiments.
    Powathil GG; Munro AJ; Chaplain MA; Swat M
    J Theor Biol; 2016 Jul; 401():1-14. PubMed ID: 27084360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stochastic modelling of the role of cisplatin in altered fractionation schedules for head and neck cancer.
    Marcu L; Bezak E
    Phys Med; 2010 Oct; 26(4):177-83. PubMed ID: 20034829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.
    Oroji A; Omar M; Yarahmadian S
    J Theor Biol; 2016 Oct; 407():128-137. PubMed ID: 27457094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects.
    Horas JA; Olguin OR; Rizzotto MG
    Phys Med Biol; 2005 Apr; 50(8):1689-701. PubMed ID: 15815090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of different dose-response parameters on biologically optimized IMRT in breast cancer.
    Ferreira BC; Mavroidis P; Adamus-Górka M; Svensson R; Lind BK
    Phys Med Biol; 2008 May; 53(10):2733-52. PubMed ID: 18448874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of human tumor cells of varying radiosensitivity and radiocurability to fractionated irradiation.
    Dahlberg WK; Azzam EI; Yu Y; Little JB
    Cancer Res; 1999 Oct; 59(20):5365-9. PubMed ID: 10537321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.