These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29218736)

  • 1. A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
    Wu W; Zhang Y; Ding D; He T
    Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29218736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Honeycombed Porous, Size-Matching Architecture for High-Performance Hybrid Direct Carbon Fuel Cell Anode.
    Ma M; Yang X; Ren R; Xu C; Qiao J; Sun W; Sun K; Wang Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30411-30419. PubMed ID: 32543180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y
    Ai N; Li N; Rickard WD; Cheng Y; Chen K; Jiang SP
    ChemSusChem; 2017 Mar; 10(5):993-1003. PubMed ID: 28220997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Stability and Catalytic Activity on Layered Perovskite Anode for High-Performance Hybrid Direct Carbon Fuel Cells.
    Ma M; Qiao J; Yang X; Xu C; Ren R; Sun W; Sun K; Wang Z
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12938-12948. PubMed ID: 32091875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Ionic Mass Transport on the Performance of a Novel Tubular Direct Carbon Fuel Cell for the Maximal Use of a Carbon-Filled Porous Anode.
    Choudhury R; Kang AH; Lee D
    ACS Omega; 2022 Sep; 7(35):31003-31012. PubMed ID: 36092551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in developing direct carbon fuel cells.
    Jiang C; Ma J; Corre G; Jain SL; Irvine JTS
    Chem Soc Rev; 2017 May; 46(10):2889-2912. PubMed ID: 28422193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7406-12. PubMed ID: 25804559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.
    Sherrell PC; Zhang W; Zhao J; Wallace GG; Chen J; Minett AI
    ChemSusChem; 2012 Jul; 5(7):1233-40. PubMed ID: 22696244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.
    Yue X; Arenillas A; Irvine JT
    Faraday Discuss; 2016 Aug; 190():269-89. PubMed ID: 27272986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Overview on the Novel Core-Shell Electrodes for Solid Oxide Fuel Cell (SOFC) Using Polymeric Methodology.
    Wang RT; Chang HY; Wang JC
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Materials Selection and Construction Development for Ensuring the Availability and Durability of the Molten Hydroxide Electrolyte Direct Carbon Fuel Cell (MH-MCFC).
    Kacprzak A; Włodarczyk R
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33086664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carbon-air battery for high power generation.
    Yang B; Ran R; Zhong Y; Su C; Tadé MO; Shao Z
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3722-5. PubMed ID: 25620573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior power density solid oxide fuel cells by enlarging the three-phase boundary region of a NiO-Ce0.8Gd0.2O1.9 composite anode through optimized surface structure.
    Yoon D; Su Q; Wang H; Manthiram A
    Phys Chem Chem Phys; 2013 Sep; 15(36):14966-72. PubMed ID: 23907182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells.
    Zhu Y; Zhou W; Ran R; Chen Y; Shao Z; Liu M
    Nano Lett; 2016 Jan; 16(1):512-8. PubMed ID: 26619096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells.
    Kim S; Jun A; Kwon O; Kim J; Yoo S; Jeong HY; Shin J; Kim G
    ChemSusChem; 2015 Sep; 8(18):3153-8. PubMed ID: 26227300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Chemically Regenerative Redox Fuel Cells Using a NO
    Han SB; Kwak DH; Park HS; Choi IA; Park JY; Kim SJ; Kim MC; Hong S; Park KW
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):2893-2897. PubMed ID: 28157264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infiltrated Ni
    Shi N; Xie Y; Yang Y; Huan D; Pan Y; Peng R; Xia C; Chen C; Zhan Z; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4943-4954. PubMed ID: 33492121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells.
    Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z
    Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.