These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Water soluble cryptophanes showing unprecedented affinity for xenon: candidates as NMR-based biosensors. Huber G; Brotin T; Dubois L; Desvaux H; Dutasta JP; Berthault P J Am Chem Soc; 2006 May; 128(18):6239-46. PubMed ID: 16669694 [TBL] [Abstract][Full Text] [Related]
3. Study of Doll M; Berthault P; Léonce E; Boutin C; Jeanneau E; Brotin T; De Rycke N J Org Chem; 2022 Mar; 87(5):2912-2920. PubMed ID: 35080182 [TBL] [Abstract][Full Text] [Related]
4. Role of the Methoxy Groups in Cryptophanes for Complexation of Xenon: Conformational Selection Evidence from Berthault P; Boutin C; Léonce E; Jeanneau E; Brotin T Chemphyschem; 2017 Jun; 18(12):1561-1568. PubMed ID: 28394036 [TBL] [Abstract][Full Text] [Related]
5. An Expanded Palette of Xenon-129 NMR Biosensors. Wang Y; Dmochowski IJ Acc Chem Res; 2016 Oct; 49(10):2179-2187. PubMed ID: 27643815 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes. Berthault P; Desvaux H; Wendlinger T; Gyejacquot M; Stopin A; Brotin T; Dutasta JP; Boulard Y Chemistry; 2010 Nov; 16(43):12941-6. PubMed ID: 20886471 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Cryptophanes with Two Different Reaction Sites: Chemical Platforms for Xenon Biosensing. Chapellet LL; Cochrane JR; Mari E; Boutin C; Berthault P; Brotin T J Org Chem; 2015 Jun; 80(12):6143-51. PubMed ID: 26020365 [TBL] [Abstract][Full Text] [Related]
10. Dendronized cryptophanes as water-soluble xenon hosts for (129)Xe magnetic resonance imaging. Tyagi R; Witte C; Haag R; Schröder L Org Lett; 2014 Sep; 16(17):4436-9. PubMed ID: 25152959 [TBL] [Abstract][Full Text] [Related]
11. Understanding a host-guest model system through ¹²⁹Xe NMR spectroscopic experiments and theoretical studies. Dubost E; Dognon JP; Rousseau B; Milanole G; Dugave C; Boulard Y; Léonce E; Boutin C; Berthault P Angew Chem Int Ed Engl; 2014 Sep; 53(37):9837-40. PubMed ID: 25048162 [TBL] [Abstract][Full Text] [Related]
12. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon. Hanni M; Lantto P; Vaara J Phys Chem Chem Phys; 2009 Apr; 11(14):2485-96. PubMed ID: 19325983 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of enantiopure, trisubstituted cryptophane-A derivatives. Taratula O; Kim MP; Bai Y; Philbin JP; Riggle BA; Haase DN; Dmochowski IJ Org Lett; 2012 Jul; 14(14):3580-3. PubMed ID: 22783828 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the effects of nonspecific xenon-protein interactions on (129)Xe chemical shifts in aqueous solution: further development of xenon as a biomolecular probe. Rubin SM; Spence MM; Pines A; Wemmer DE J Magn Reson; 2001 Sep; 152(1):79-86. PubMed ID: 11531366 [TBL] [Abstract][Full Text] [Related]
19. Exploring new 129Xe chemical shift ranges in HXeY compounds: hydrogen more relativistic than xenon. Lantto P; Standara S; Riedel S; Vaara J; Straka M Phys Chem Chem Phys; 2012 Aug; 14(31):10944-52. PubMed ID: 22782133 [TBL] [Abstract][Full Text] [Related]
20. Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. Kim BS; Ko YH; Kim Y; Lee HJ; Selvapalam N; Lee HC; Kim K Chem Commun (Camb); 2008 Jun; (24):2756-8. PubMed ID: 18688300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]