BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29218858)

  • 1. In vitro and in vivo study of commercial calcium phosphate cement HydroSet™.
    Kent NW; Blunn G; Karpukhina N; Davis G; de Godoy RF; Wilson RM; Coathup M; Onwordi L; Quak WY; Hill R
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):21-30. PubMed ID: 29218858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle.
    Paul K; Lee BY; Abueva C; Kim B; Choi HJ; Bae SH; Lee BT
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):260-271. PubMed ID: 26478465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of chelate-setting α-tricalcium phosphate cement using sodium citrate and sodium alginate as mixing solution and its in vivo osteoconductivity.
    Konishi T; Lim PN; Honda M; Nagaya M; Nagashima H; Thian ES; Aizawa M
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2361-2370. PubMed ID: 29149487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of platelet-rich plasma on biological activity and bone regeneration of brushite-based calcium phosphate cement.
    Hasan ML; Taz M; Lee BT
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2316-2326. PubMed ID: 29105970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics.
    Blom EJ; Klein-Nulend J; Wolke JG; van Waas MA; Driessens FC; Burger EH
    J Biomed Mater Res; 2002 Feb; 59(2):265-72. PubMed ID: 11745562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octacalcium phosphate phase forming cements as an injectable bone substitute materials: Preparation and in vitro structural study.
    Demir Ö; Pylostomou A; Loca D
    Biomater Adv; 2024 Feb; 157():213731. PubMed ID: 38103399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of self-setting β-tricalcium phosphate granular cement.
    Fukuda N; Tsuru K; Mori Y; Ishikawa K
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of a silk fibroin/calcium sulfate bone cement.
    Zhang F; Zhu H; Wang G; Xie J; Tao Y; Xia W; Yang H
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):512-519. PubMed ID: 28194874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration.
    Meng D; Dong L; Wen Y; Xie Q
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of octacalcium phosphate in calcium phosphate cements.
    De Maeyer EA; Verbeeck RM; Vercruysse CW
    J Biomed Mater Res; 2000 Oct; 52(1):95-106. PubMed ID: 10906679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Setting reaction and hardening of an apatitic calcium phosphate cement.
    Ginebra MP; Fernández E; De Maeyer EA; Verbeeck RM; Boltong MG; Ginebra J; Driessens FC; Planell JA
    J Dent Res; 1997 Apr; 76(4):905-12. PubMed ID: 9126187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety, osseointegration, and bone ingrowth analysis of PMMA-based porous cement on animal metaphyseal bone defect model.
    Cimatti B; Santos MAD; Brassesco MS; Okano LT; Barboza WM; Nogueira-Barbosa MH; Engel EE
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):649-658. PubMed ID: 28276202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of polymeric additives on the mechanical properties of alpha-tricalcium phosphate cement.
    dos Santos LA; De Oliveria LC; Rigo EC; Carrodeguas RG; Boschi AO; De Arruda AC
    Bone; 1999 Aug; 25(2 Suppl):99S-102S. PubMed ID: 10458286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement.
    Kobayashi M; Nakamura T; Shinzato S; Mousa WF; Nishio K; Ohsawa K; Kokubo T; Kikutani T
    J Biomed Mater Res; 1999 Sep; 46(4):447-57. PubMed ID: 10398005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio.
    Lilley KJ; Gbureck U; Wright AJ; Farrar DF; Barralet JE
    J Mater Sci Mater Med; 2005 Dec; 16(12):1185-90. PubMed ID: 16362220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of hydroxyapatite in new calcium phosphate cements.
    Takagi S; Chow LC; Ishikawa K
    Biomaterials; 1998 Sep; 19(17):1593-9. PubMed ID: 9830985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement.
    Otsuka M; Matsuda Y; Suwa Y; Fox JL; Higuchi WI
    J Biomed Mater Res; 1995 Jan; 29(1):25-32. PubMed ID: 7713955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural study of octacalcium phosphate bone cement conversion in vitro.
    Fosca M; Komlev VS; Fedotov AY; Caminiti R; Rau JV
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6202-10. PubMed ID: 23088338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement.
    Burguera EF; Guitian F; Chow LC
    J Biomed Mater Res A; 2008 Jun; 85(3):674-83. PubMed ID: 17876802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.