BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29218858)

  • 41. Design and properties of a novel radiopaque injectable apatitic calcium phosphate cement, suitable for image-guided implantation.
    Le Ferrec M; Mellier C; Boukhechba F; Le Corroller T; Guenoun D; Fayon F; Montouillout V; Despas C; Walcarius A; Massiot D; Lefèvre FX; Robic C; Scimeca JC; Bouler JM; Bujoli B
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2786-2795. PubMed ID: 29226553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.
    Combes C; Bareille R; Rey C
    J Biomed Mater Res A; 2006 Nov; 79(2):318-28. PubMed ID: 16817210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration.
    Wu F; Wei J; Guo H; Chen F; Hong H; Liu C
    Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transforming growth factor-beta1 incorporation in an alpha-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties.
    Blom EJ; Klein-Nulend J; Wolke JG; Kurashina K; van Waas MA; Burger EH
    Biomaterials; 2002 Feb; 23(4):1261-8. PubMed ID: 11794323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate.
    Liu J; Shirosaki Y; Miyazaki T
    J Biomater Appl; 2015 Apr; 29(9):1296-303. PubMed ID: 25568169
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of calcium silicate/calcium phosphate cement for bone regeneration.
    Guo H; Wei J; Yuan Y; Liu C
    Biomed Mater; 2007 Sep; 2(3):S153-9. PubMed ID: 18458461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lithium doped calcium phosphate cement maintains physical mechanical properties and promotes osteoblast proliferation and differentiation.
    Li L; Wang R; Li B; Liang W; Pan H; Cui X; Tang J; Li B
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):944-952. PubMed ID: 26856256
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical characterization of brushite and hydroxyapatite cements.
    Charrière E; Terrazzoni S; Pittet C; Mordasini PH; Dutoit M; Lemaître J; Zysset PH
    Biomaterials; 2001 Nov; 22(21):2937-45. PubMed ID: 11561900
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Compressive, diametral tensile and biaxial flexural strength of cutting-edge calcium phosphate cements.
    Luo J; Ajaxon I; Ginebra MP; Engqvist H; Persson C
    J Mech Behav Biomed Mater; 2016 Jul; 60():617-627. PubMed ID: 27082025
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Osteotransductive bone cements.
    Driessens FC; Planell JA; Boltong MG; Khairoun I; Ginebra MP
    Proc Inst Mech Eng H; 1998; 212(6):427-35. PubMed ID: 9852738
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue responses of calcium phosphate cement: a study in dogs.
    Yuan H; Li Y; de Bruijn JD; de Groot K; Zhang X
    Biomaterials; 2000 Jun; 21(12):1283-90. PubMed ID: 10811310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements.
    Oreffo RO; Driessens FC; Planell JA; Triffitt JT
    Biomaterials; 1998 Oct; 19(20):1845-54. PubMed ID: 9855185
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Incorporation of methotrexate in calcium phosphate cement: behavior and release in vitro and in vivo.
    Yang Z; Han J; Li J; Li X; Li Z; Li S
    Orthopedics; 2009 Jan; 32(1):27. PubMed ID: 19226038
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of Sr-incorporated biphasic calcium phosphate bone cement.
    Zhu H; Guo D; Qi W; Xu K
    Biomed Mater; 2017 Jan; 12(1):015016. PubMed ID: 28094246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Injectable biphasic calcium phosphate cements as a potential bone substitute.
    Sariibrahimoglu K; Wolke JG; Leeuwenburgh SC; Yubao L; Jansen JA
    J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):415-22. PubMed ID: 24106108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of novel strontium containing bioactive glass based calcium phosphate cement.
    D'Onofrio A; Kent NW; Shahdad SA; Hill RG
    Dent Mater; 2016 Jun; 32(6):703-12. PubMed ID: 27033459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of brushite cements with improved properties by adding graphene oxide.
    Nasrollahi N; Nourian Dehkordi A; Jamshidizad A; Chehelgerdi M
    Int J Nanomedicine; 2019; 14():3785-3797. PubMed ID: 31239662
    [No Abstract]   [Full Text] [Related]  

  • 59. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites.
    Sopcak T; Medvecky L; Giretova M; Kovalcikova A; Stulajterova R; Durisin J
    Biomed Mater; 2016 Aug; 11(4):045013. PubMed ID: 27509265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design of novel organic-inorganic composite bone cements with high compressive strength, in vitro bioactivity and cytocompatibility.
    Ji M; Ding Z; Chen H; Peng H; Yan Y
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2365-2377. PubMed ID: 30689278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.