These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29218866)
1. Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures. Greenside P; Hillenmeyer M; Kundaje A Pac Symp Biocomput; 2018; 23():20-31. PubMed ID: 29218866 [TBL] [Abstract][Full Text] [Related]
2. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction. Liu X; Feng H; Wu J; Xia K Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771 [TBL] [Abstract][Full Text] [Related]
3. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery. Li Z; Huang R; Xia M; Patterson TA; Hong H Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672 [TBL] [Abstract][Full Text] [Related]
4. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures. Strömbergsson H; Kryshtafovych A; Prusis P; Fidelis K; Wikberg JE; Komorowski J; Hvidsten TR Proteins; 2006 Nov; 65(3):568-79. PubMed ID: 16948162 [TBL] [Abstract][Full Text] [Related]
5. ChemBoost: A Chemical Language Based Approach for Protein - Ligand Binding Affinity Prediction. Özçelik R; Öztürk H; Özgür A; Ozkirimli E Mol Inform; 2021 May; 40(5):e2000212. PubMed ID: 33225594 [TBL] [Abstract][Full Text] [Related]
6. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction. Ashtawy HM; Mahapatra NR IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221 [TBL] [Abstract][Full Text] [Related]
7. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. Nagamine N; Shirakawa T; Minato Y; Torii K; Kobayashi H; Imoto M; Sakakibara Y PLoS Comput Biol; 2009 Jun; 5(6):e1000397. PubMed ID: 19503826 [TBL] [Abstract][Full Text] [Related]
8. Ensembling methods for protein-ligand binding affinity prediction. Mohamed Abdul Cader J; Newton MAH; Rahman J; Mohamed Abdul Cader AJ; Sattar A Sci Rep; 2024 Oct; 14(1):24447. PubMed ID: 39424851 [TBL] [Abstract][Full Text] [Related]
9. Predicting target-ligand interactions using protein ligand-binding site and ligand substructures. Wang C; Liu J; Luo F; Deng Z; Hu QN BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S2. PubMed ID: 25707321 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Protein-ligand Interaction Based on Sequence Similarity and Ligand Structural Features. Karasev D; Sobolev B; Lagunin A; Filimonov D; Poroikov V Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142754 [TBL] [Abstract][Full Text] [Related]
11. Surface-based multimodal protein-ligand binding affinity prediction. Xu S; Shen L; Zhang M; Jiang C; Zhang X; Xu Y; Liu J; Liu X Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38905501 [TBL] [Abstract][Full Text] [Related]
12. Identification of Protein-Ligand Binding Sites by Sequence Information and Ensemble Classifier. Ding Y; Tang J; Guo F J Chem Inf Model; 2017 Dec; 57(12):3149-3161. PubMed ID: 29125297 [TBL] [Abstract][Full Text] [Related]
13. Quantitative chemogenomics: machine-learning models of protein-ligand interaction. Andersson CR; Gustafsson MG; Strömbergsson H Curr Top Med Chem; 2011; 11(15):1978-93. PubMed ID: 21470169 [TBL] [Abstract][Full Text] [Related]
14. Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification. Polash AH; Nakano T; Takeda S; Brown JB Molecules; 2019 Jul; 24(15):. PubMed ID: 31357419 [TBL] [Abstract][Full Text] [Related]
15. K Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725 [TBL] [Abstract][Full Text] [Related]
16. Ligand Binding Site Comparison - LiBiSCo - a web-based tool for analyzing interactions between proteins and ligands to explore amino acid specificity within active sites. Hassan S; Töpel M; Aronsson H Proteins; 2021 Nov; 89(11):1530-1540. PubMed ID: 34240464 [TBL] [Abstract][Full Text] [Related]
17. Improving detection of protein-ligand binding sites with 3D segmentation. Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P Sci Rep; 2020 Mar; 10(1):5035. PubMed ID: 32193447 [TBL] [Abstract][Full Text] [Related]
18. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction. Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923 [TBL] [Abstract][Full Text] [Related]
19. Finding motif pairs in the interactions between heterogeneous proteins via bootstrapping and boosting. Kim J; Huang DS; Han K BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S57. PubMed ID: 19208160 [TBL] [Abstract][Full Text] [Related]
20. Development of a novel representation of drug 3D structures and enhancement of the TSR-based method for probing drug and target interactions. Milon TI; Wang Y; Fontenot RL; Khajouie P; Villinger F; Raghavan V; Xu W Comput Biol Chem; 2024 Oct; 112():108117. PubMed ID: 38852360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]