These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29218866)

  • 21. Drug-Target Interactions: Prediction Methods and Applications.
    Anusuya S; Kesherwani M; Priya KV; Vimala A; Shanmugam G; Velmurugan D; Gromiha MM
    Curr Protein Pept Sci; 2018; 19(6):537-561. PubMed ID: 27829350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing common substructures of ligands for GPCR protein subfamilies.
    Erguner B; Hattori M; Goto S; Kanehisa M
    Genome Inform; 2010; 24():31-41. PubMed ID: 22081587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of structural motifs using protein structural alphabets and 1D motif-finding methods.
    Ku SY; Hu YJ
    Adv Exp Med Biol; 2010; 680():117-23. PubMed ID: 20865493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins.
    Cai T; Xie L; Zhang S; Chen M; He D; Badkul A; Liu Y; Namballa HK; Dorogan M; Harding WW; Mura C; Bourne PE; Xie L
    PLoS Comput Biol; 2023 Jan; 19(1):e1010851. PubMed ID: 36652496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical and machine learning approaches to predicting protein-ligand interactions.
    Colwell LJ
    Curr Opin Struct Biol; 2018 Apr; 49():123-128. PubMed ID: 29452923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of a hierarchical structure of proteins and ligand binding sites of receptors using the triangular spatial relationship-based structure comparison method and development of a size-filtering feature designed for comparing different sizes of protein structures.
    Kondra S; Chen F; Chen Y; Chen Y; Collette CJ; Xu W
    Proteins; 2022 Jan; 90(1):239-257. PubMed ID: 34392570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein structure and computational drug discovery.
    Nero TL; Parker MW; Morton CJ
    Biochem Soc Trans; 2018 Oct; 46(5):1367-1379. PubMed ID: 30242117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms.
    Seo S; Choi J; Ahn SK; Kim KW; Kim J; Choi J; Kim J; Ahn J
    Comput Math Methods Med; 2018; 2018():6565241. PubMed ID: 29666662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinations of protein-chemical complex structures reveal new targets for established drugs.
    Kalinina OV; Wichmann O; Apic G; Russell RB
    PLoS Comput Biol; 2011 May; 7(5):e1002043. PubMed ID: 21573205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PfgPDI: Pocket feature-enabled graph neural network for protein-drug interaction prediction.
    Zhang Y; Zhou C
    J Bioinform Comput Biol; 2024 Apr; 22(2):2450004. PubMed ID: 38812467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.
    Wei NN; Hamza A
    J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking.
    Wu Q; Peng Z; Zhang Y; Yang J
    Nucleic Acids Res; 2018 Jul; 46(W1):W438-W442. PubMed ID: 29846643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonparametric chemical descriptors for the calculation of ligand-biopolymer affinities with machine-learning scoring functions.
    Moman E; Grishina MA; Potemkin VA
    J Comput Aided Mol Des; 2019 Nov; 33(11):943-953. PubMed ID: 31728812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions.
    Strömbergsson H; Prusis P; Midelfart H; Lapinsh M; Wikberg JE; Komorowski J
    Proteins; 2006 Apr; 63(1):24-34. PubMed ID: 16435365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set.
    Krasowski A; Muthas D; Sarkar A; Schmitt S; Brenk R
    J Chem Inf Model; 2011 Nov; 51(11):2829-42. PubMed ID: 21995295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
    Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B
    Front Immunol; 2018; 9():1795. PubMed ID: 30127785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.