BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2549 related articles for article (PubMed ID: 29218884)

  • 1. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical power of transcriptome-wide association studies.
    He R; Xue H; Pan W;
    Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics.
    Luningham JM; Chen J; Tang S; De Jager PL; Bennett DA; Buchman AS; Yang J
    Am J Hum Genet; 2020 Oct; 107(4):714-726. PubMed ID: 32961112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power analysis of transcriptome-wide association study: Implications for practical protocol choice.
    Cao C; Ding B; Li Q; Kwok D; Wu J; Long Q
    PLoS Genet; 2021 Feb; 17(2):e1009405. PubMed ID: 33635859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression.
    Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI
    Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits.
    Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J
    Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies.
    Zeng P; Dai J; Jin S; Zhou X
    Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some statistical consideration in transcriptome-wide association studies.
    Xue H; Pan W;
    Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multitrait transcriptome-wide association study (TWAS) tests.
    Feng H; Mancuso N; Pasaniuc B; Kraft P
    Genet Epidemiol; 2021 Sep; 45(6):563-576. PubMed ID: 34082479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia.
    Wu C; Pan W
    Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression.
    Li B; Verma SS; Veturi YC; Verma A; Bradford Y; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2018; 23():448-459. PubMed ID: 29218904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and powerful eQTL weighted method to detect genes associated with complex trait using GWAS summary data.
    Zhang J; Xie S; Gonzales S; Liu J; Wang X
    Genet Epidemiol; 2020 Sep; 44(6):550-563. PubMed ID: 32350919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-Wide Association Supplements Genome-Wide Association in
    Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB
    G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits.
    Knutson KA; Pan W
    Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries.
    Li B; Ritchie MD
    Front Genet; 2021; 12():713230. PubMed ID: 34659337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A powerful and versatile colocalization test.
    Deng Y; Pan W
    PLoS Comput Biol; 2020 Apr; 16(4):e1007778. PubMed ID: 32275709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci.
    Ghaffar A; ; Nyholt DR
    Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue specific regulation of transcription in endometrium and association with disease.
    Mortlock S; Kendarsari RI; Fung JN; Gibson G; Yang F; Restuadi R; Girling JE; Holdsworth-Carson SJ; Teh WT; Lukowski SW; Healey M; Qi T; Rogers PAW; Yang J; McKinnon B; Montgomery GW
    Hum Reprod; 2020 Feb; 35(2):377-393. PubMed ID: 32103259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 128.