These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2584 related articles for article (PubMed ID: 29218884)
1. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
2. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
3. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
4. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
5. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics. Luningham JM; Chen J; Tang S; De Jager PL; Bennett DA; Buchman AS; Yang J Am J Hum Genet; 2020 Oct; 107(4):714-726. PubMed ID: 32961112 [TBL] [Abstract][Full Text] [Related]
6. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
7. Power analysis of transcriptome-wide association study: Implications for practical protocol choice. Cao C; Ding B; Li Q; Kwok D; Wu J; Long Q PLoS Genet; 2021 Feb; 17(2):e1009405. PubMed ID: 33635859 [TBL] [Abstract][Full Text] [Related]
8. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Zeng P; Dai J; Jin S; Zhou X Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361 [TBL] [Abstract][Full Text] [Related]
9. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits. Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719 [TBL] [Abstract][Full Text] [Related]
10. Some statistical consideration in transcriptome-wide association studies. Xue H; Pan W; Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608 [TBL] [Abstract][Full Text] [Related]
11. Multitrait transcriptome-wide association study (TWAS) tests. Feng H; Mancuso N; Pasaniuc B; Kraft P Genet Epidemiol; 2021 Sep; 45(6):563-576. PubMed ID: 34082479 [TBL] [Abstract][Full Text] [Related]
12. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Wu C; Pan W Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression. Li B; Verma SS; Veturi YC; Verma A; Bradford Y; Haas DW; Ritchie MD Pac Symp Biocomput; 2018; 23():448-459. PubMed ID: 29218904 [TBL] [Abstract][Full Text] [Related]
14. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332 [TBL] [Abstract][Full Text] [Related]
15. A fast and powerful eQTL weighted method to detect genes associated with complex trait using GWAS summary data. Zhang J; Xie S; Gonzales S; Liu J; Wang X Genet Epidemiol; 2020 Sep; 44(6):550-563. PubMed ID: 32350919 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome-Wide Association Supplements Genome-Wide Association in Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639 [TBL] [Abstract][Full Text] [Related]
17. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Knutson KA; Pan W Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104 [TBL] [Abstract][Full Text] [Related]
18. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Li B; Ritchie MD Front Genet; 2021; 12():713230. PubMed ID: 34659337 [TBL] [Abstract][Full Text] [Related]
19. A powerful and versatile colocalization test. Deng Y; Pan W PLoS Comput Biol; 2020 Apr; 16(4):e1007778. PubMed ID: 32275709 [TBL] [Abstract][Full Text] [Related]
20. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]