These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 29218898)
1. Building trans-omics evidence: using imaging and 'omics' to characterize cancer profiles. Srivastava A; Kulkarni C; Mallick P; Huang K; Machiraju R Pac Symp Biocomput; 2018; 23():377-387. PubMed ID: 29218898 [TBL] [Abstract][Full Text] [Related]
2. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer. Kim D; Li R; Dudek SM; Ritchie MD J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077 [TBL] [Abstract][Full Text] [Related]
3. Novel secretome-to-transcriptome integrated or secreto-transcriptomic approach to reveal liquid biopsy biomarkers for predicting individualized prognosis of breast cancer patients. Ankney JA; Xie L; Wrobel JA; Wang L; Chen X BMC Med Genomics; 2019 May; 12(1):78. PubMed ID: 31146747 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples. Waldemarson S; Kurbasic E; Krogh M; Cifani P; Berggård T; Borg Å; James P Breast Cancer Res; 2016 Jun; 18(1):69. PubMed ID: 27357824 [TBL] [Abstract][Full Text] [Related]
5. The molecular basis of breast cancer pathological phenotypes. Heng YJ; Lester SC; Tse GM; Factor RE; Allison KH; Collins LC; Chen YY; Jensen KC; Johnson NB; Jeong JC; Punjabi R; Shin SJ; Singh K; Krings G; Eberhard DA; Tan PH; Korski K; Waldman FM; Gutman DA; Sanders M; Reis-Filho JS; Flanagan SR; Gendoo DM; Chen GM; Haibe-Kains B; Ciriello G; Hoadley KA; Perou CM; Beck AH J Pathol; 2017 Feb; 241(3):375-391. PubMed ID: 27861902 [TBL] [Abstract][Full Text] [Related]
6. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Vasaikar SV; Straub P; Wang J; Zhang B Nucleic Acids Res; 2018 Jan; 46(D1):D956-D963. PubMed ID: 29136207 [TBL] [Abstract][Full Text] [Related]
7. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. Liu C; Wang X; Genchev GZ; Lu H Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406 [TBL] [Abstract][Full Text] [Related]
8. NNBGWO-BRCA marker: Neural Network and binary grey wolf optimization based Breast cancer biomarker discovery framework using multi-omics dataset. Li M; Cai Y; Zhang M; Deng S; Wang L Comput Methods Programs Biomed; 2024 Sep; 254():108291. PubMed ID: 38909399 [TBL] [Abstract][Full Text] [Related]
9. BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways. Kim I; Choi S; Kim S BMC Bioinformatics; 2018 Feb; 19(Suppl 1):42. PubMed ID: 29504910 [TBL] [Abstract][Full Text] [Related]
10. Bottom-up, integrated -omics analysis identifies broadly dosage-sensitive genes in breast cancer samples from TCGA. Kechavarzi BD; Wu H; Doman TN PLoS One; 2019; 14(1):e0210910. PubMed ID: 30653567 [TBL] [Abstract][Full Text] [Related]
11. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data. Lin Y; Zhang W; Cao H; Li G; Du W Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32759821 [TBL] [Abstract][Full Text] [Related]
12. Discriminative bag-of-cells for imaging-genomics. Chidester B; Do MN; Ma J Pac Symp Biocomput; 2018; 23():319-330. PubMed ID: 29218893 [TBL] [Abstract][Full Text] [Related]
13. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference. Kim TR; Jeong HH; Sohn KA BMC Med Genomics; 2019 Jul; 12(Suppl 5):94. PubMed ID: 31296204 [TBL] [Abstract][Full Text] [Related]
14. Sliced inverse regression for integrative multi-omics data analysis. Jain Y; Ding S; Qiu J Stat Appl Genet Mol Biol; 2019 Jan; 18(1):. PubMed ID: 30685747 [TBL] [Abstract][Full Text] [Related]
15. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer. Tong L; Wu H; Wang MD Methods; 2021 May; 189():74-85. PubMed ID: 32763377 [TBL] [Abstract][Full Text] [Related]
16. Challenges in projecting clustering results across gene expression-profiling datasets. Lusa L; McShane LM; Reid JF; De Cecco L; Ambrogi F; Biganzoli E; Gariboldi M; Pierotti MA J Natl Cancer Inst; 2007 Nov; 99(22):1715-23. PubMed ID: 18000217 [TBL] [Abstract][Full Text] [Related]
17. Histopathological Images and Multi-Omics Integration Predict Molecular Characteristics and Survival in Lung Adenocarcinoma. Chen L; Zeng H; Xiang Y; Huang Y; Luo Y; Ma X Front Cell Dev Biol; 2021; 9():720110. PubMed ID: 34708036 [TBL] [Abstract][Full Text] [Related]
18. Tumor antigens as proteogenomic biomarkers in invasive ductal carcinomas. Olsen L; Campos B; Winther O; Sgroi DC; Karger BL; Brusic V BMC Med Genomics; 2014; 7 Suppl 3(Suppl 3):S2. PubMed ID: 25521819 [TBL] [Abstract][Full Text] [Related]
19. Deep learning with evolutionary and genomic profiles for identifying cancer subtypes. Lin CY; Ruan P; Li R; Yang JM; See S; Song J; Akutsu T J Bioinform Comput Biol; 2019 Jun; 17(3):1940005. PubMed ID: 31288637 [TBL] [Abstract][Full Text] [Related]
20. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]