These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29218913)

  • 1. Leveraging putative enhancer-promoter interactions to investigate two-way epistasis in Type 2 Diabetes GWAS.
    Manduchi E; Chesi A; Hall MA; Grant SFA; Moore JH
    Pac Symp Biocomput; 2018; 23():548-558. PubMed ID: 29218913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging epigenomics and contactomics data to investigate SNP pairs in GWAS.
    Manduchi E; Williams SM; Chesi A; Johnson ME; Wells AD; Grant SFA; Moore JH
    Hum Genet; 2018 May; 137(5):413-425. PubMed ID: 29797095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergent downstream candidate mechanisms of independent intergenic polymorphisms between co-classified diseases implicate epistasis among noncoding elements.
    Han J; Li J; Achour I; Pesce L; Foster I; Li H; Lussier YA
    Pac Symp Biocomput; 2018; 23():524-535. PubMed ID: 29218911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using Biofilter, and gene-environment interactions using the PhenX Toolkit.
    Pendergrass SA; Verma SS; Holzinger ER; Moore CB; Wallace J; Dudek SM; Huggins W; Kitchner T; Waudby C; Berg R; McCarty CA; Ritchie MD
    Pac Symp Biocomput; 2013; ():147-58. PubMed ID: 23424120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of GMDR-GPU for gene-gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes.
    Zhu Z; Tong X; Zhu Z; Liang M; Cui W; Su K; Li MD; Zhu J
    PLoS One; 2013; 8(4):e61943. PubMed ID: 23626757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging three-dimensional chromatin architecture for effective reconstruction of enhancer-target gene regulatory interactions.
    Salviato E; Djordjilović V; Hariprakash JM; Tagliaferri I; Pal K; Ferrari F
    Nucleic Acids Res; 2021 Sep; 49(17):e97. PubMed ID: 34197622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies.
    Cheng M; Liu X; Yang M; Han L; Xu A; Huang Q
    J Diabetes; 2017 Apr; 9(4):362-377. PubMed ID: 27121852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HisCoM-GGI: Hierarchical structural component analysis of gene-gene interactions.
    Choi S; Lee S; Kim Y; Hwang H; Park T
    J Bioinform Comput Biol; 2018 Dec; 16(6):1840026. PubMed ID: 30567476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding unique filter sets in PLATO: a precursor to efficient interaction analysis in GWAS data.
    Grady BJ; Torstenson E; Dudek SM; Giles J; Sexton D; Ritchie MD
    Pac Symp Biocomput; 2010; ():315-26. PubMed ID: 19908384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Enhancer-Promoter Interactions with GWAS Summary Results Identifies Novel Schizophrenia-Associated Genes and Pathways.
    Wu C; Pan W
    Genetics; 2018 Jul; 209(3):699-709. PubMed ID: 29728367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional annotation of sixty-five type-2 diabetes risk SNPs and its application in risk prediction.
    Wu Y; Jing R; Dong Y; Kuang Q; Li Y; Huang Z; Gan W; Xue Y; Li Y; Li M
    Sci Rep; 2017 Mar; 7():43709. PubMed ID: 28262806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenomic model of cardiac enhancers with application to genome wide association studies.
    Sahu AD; Aniba R; Chang YP; Hannenhalli S
    Pac Symp Biocomput; 2013; ():92-102. PubMed ID: 23424115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
    Kang C; Yu H; Yi GS
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies.
    Cowman T; Koyutürk M
    Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abundant local interactions in the 4p16.1 region suggest functional mechanisms underlying SLC2A9 associations with human serum uric acid.
    Wei WH; Guo Y; Kindt AS; Merriman TR; Semple CA; Wang K; Haley CS
    Hum Mol Genet; 2014 Oct; 23(19):5061-8. PubMed ID: 24821702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potpourri: An Epistasis Test Prioritization Algorithm via Diverse SNP Selection.
    Caylak G; Tastan O; Cicek AE
    J Comput Biol; 2021 Apr; 28(4):365-377. PubMed ID: 33275856
    [No Abstract]   [Full Text] [Related]  

  • 20. Using the bipartite human phenotype network to reveal pleiotropy and epistasis beyond the gene.
    Darabos C; Harmon SH; Moore JH
    Pac Symp Biocomput; 2014; ():188-99. PubMed ID: 24297546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.