These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29218924)

  • 1. Au/NiFe/M(Au, MoS2, graphene) trilayer magnetoplasmonics DNA-hybridized sensors with high record of sensitivity.
    Faridi E; Moradi M; Ansari N; Baradaran Ghasemi AH; Afshar A; Mohseni Armaki SM
    J Biomed Opt; 2017 Dec; 22(12):1-8. PubMed ID: 29218924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues.
    Chung K; Rani A; Lee JE; Kim JE; Kim Y; Yang H; Kim SO; Kim D; Kim DH
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):144-51. PubMed ID: 25555067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive graphene biosensors based on surface plasmon resonance.
    Wu L; Chu HS; Koh WS; Li EP
    Opt Express; 2010 Jul; 18(14):14395-400. PubMed ID: 20639924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure.
    Yue C; Lang Y; Zhou X; Liu Q
    Appl Opt; 2019 Dec; 58(34):9411-9420. PubMed ID: 31873539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Au Nanofilm-Graphene/D-Type Fiber Surface Plasmon Resonance Sensor for Highly Sensitive Specificity Bioanalysis.
    Xi X; Xu J; Li S; Song J; Yang W; Sun Y; Jiang S; Han Y; Fan X
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32059555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer.
    Zhang J; Sun Y; Wu Q; Gao Y; Zhang H; Bai Y; Song D
    Colloids Surf B Biointerfaces; 2014 Apr; 116():211-8. PubMed ID: 24480068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors.
    Choi SH; Kim YL; Byun KM
    Opt Express; 2011 Jan; 19(2):458-66. PubMed ID: 21263585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosensing Based on Magneto-Optical Surface Plasmon Resonance.
    David S; Polonschii C; Gheorghiu M; Bratu D; Gheorghiu E
    Methods Mol Biol; 2017; 1571():73-88. PubMed ID: 28281250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers.
    Armelles G; González-Díaz JB; García-Martín A; García-Martín JM; Cebollada A; Ujué González M; Acimovic S; Cesario J; Quidant R; Badenes G
    Opt Express; 2008 Sep; 16(20):16104-12. PubMed ID: 18825249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-MoS
    Hossain MB; Rana MM; Abdulrazak LF; Mitra S; Rahman M
    Biochem Biophys Rep; 2019 Jul; 18():100639. PubMed ID: 31016249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal Enhancement Strategies for Refractive Index-Sensitive Nanobiosensor.
    Syahir A; Kajikawa K; Mihara H
    Protein Pept Lett; 2018; 25(1):34-41. PubMed ID: 29237369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical sensors and biosensors based on less aggregated graphene.
    Bo X; Zhou M; Guo L
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):167-186. PubMed ID: 27161575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing.
    Xue T; Cui X; Guan W; Wang Q; Liu C; Wang H; Qi K; Singh DJ; Zheng W
    Biosens Bioelectron; 2014 Aug; 58():374-9. PubMed ID: 24686149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Transverse Magneto-Optical Kerr Effect in Cr/NiFe Bilayer Thin Films by Changing the Thicknesses of the Cr Layer.
    Hashim H; Kozhaev M; Kapralov P; Panina L; Belotelov V; Víšová I; Chvostová D; Dejneka A; Shpetnyy I; Latyshev V; Vorobiov S; Komanický V
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32024156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors.
    Zhao X; Wong MM; Chiu SK; Pang SW
    Biosens Bioelectron; 2015 Dec; 74():799-807. PubMed ID: 26232005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays.
    Miao J; Hu W; Jing Y; Luo W; Liao L; Pan A; Wu S; Cheng J; Chen X; Lu W
    Small; 2015 May; 11(20):2392-8. PubMed ID: 25630636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Enhancement of SPR Biosensor Using Graphene-MoS
    Cai H; Wang M; Wu Z; Liu J; Wang X
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing.
    Regatos D; Sepúlveda B; Fariña D; Carrascosa LG; Lechuga LM
    Opt Express; 2011 Apr; 19(9):8336-46. PubMed ID: 21643085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms.
    Diaz-Valencia BF; Mejía-Salazar JR; Oliveira ON; Porras-Montenegro N; Albella P
    ACS Omega; 2017 Nov; 2(11):7682-7685. PubMed ID: 30023560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermal effects induced by surface plasmon resonance at graphene/gold nanointerfaces: A multiscale modeling study.
    Pang J; Tao L; Lu X; Yang Q; Pachauri V; Wang Z; Ingebrandt S; Chen X
    Biosens Bioelectron; 2019 Feb; 126():470-477. PubMed ID: 30472444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.