These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29218984)

  • 1. Catalytic Organic Reactions in Water toward Sustainable Society.
    Kitanosono T; Masuda K; Xu P; Kobayashi S
    Chem Rev; 2018 Jan; 118(2):679-746. PubMed ID: 29218984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green chemistry oriented organic synthesis in water.
    Simon MO; Li CJ
    Chem Soc Rev; 2012 Feb; 41(4):1415-27. PubMed ID: 22048162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gallium(III) triflate: an efficient and a sustainable Lewis acid catalyst for organic synthetic transformations.
    Prakash GK; Mathew T; Olah GA
    Acc Chem Res; 2012 Apr; 45(4):565-77. PubMed ID: 22148160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent developments on ultrasound assisted catalyst-free organic synthesis.
    Banerjee B
    Ultrason Sonochem; 2017 Mar; 35(Pt A):1-14. PubMed ID: 27771266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic synthesis reactions on-water at the organic-liquid water interface.
    Butler RN; Coyne AG
    Org Biomol Chem; 2016 Oct; 14(42):9945-9960. PubMed ID: 27714194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of catalytic nucleophilic additions of terminal alkynes in water.
    Li CJ
    Acc Chem Res; 2010 Apr; 43(4):581-90. PubMed ID: 20095650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transitioning organic synthesis from organic solvents to water. What's
    Lipshutz BH; Ghorai S
    Green Chem; 2014 Aug; 16(8):3660-3679. PubMed ID: 25170307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic aqueous tunable solvents (OATS): a vehicle for coupling reactions and separations.
    Pollet P; Hart RJ; Eckert CA; Liotta CL
    Acc Chem Res; 2010 Sep; 43(9):1237-45. PubMed ID: 20565064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica.
    Zhu FX; Wang W; Li HX
    J Am Chem Soc; 2011 Aug; 133(30):11632-40. PubMed ID: 21707062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions.
    Machado IV; Dos Santos JRN; Januario MAP; Corrêa AG
    Ultrason Sonochem; 2021 Oct; 78():105704. PubMed ID: 34454180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds.
    De Rosa M; La Manna P; Talotta C; Soriente A; Gaeta C; Neri P
    Front Chem; 2018; 6():84. PubMed ID: 29666791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports.
    Huo C; Chan TH
    Chem Soc Rev; 2010 Aug; 39(8):2977-3006. PubMed ID: 20480066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of water-soluble and water-insoluble amphiphilic derivatives of dextran in organic medium.
    Covis R; Ladaviere C; Desbrieres J; Marie E; Durand A
    Carbohydr Polym; 2013 Jun; 95(1):360-5. PubMed ID: 23618280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.
    Kitanosono T; Xu P; Kobayashi S
    Chem Asian J; 2014 Jan; 9(1):179-88. PubMed ID: 24101583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.
    Ye R; Zhukhovitskiy AV; Deraedt CV; Toste FD; Somorjai GA
    Acc Chem Res; 2017 Aug; 50(8):1894-1901. PubMed ID: 28704031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melamine and melamine-formaldehyde polymers as ligands for palladium and application to Suzuki-Miyaura cross-coupling reactions in sustainable solvents.
    Edwards GA; Trafford MA; Hamilton AE; Buxton AM; Bardeaux MC; Chalker JM
    J Org Chem; 2014 Mar; 79(5):2094-104. PubMed ID: 24533440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of whole-cell reaction and product isolation: Highly hydrophobic solvents promote in situ substrate supply and simplify extractive product isolation.
    Leis D; Lauß B; Macher-Ambrosch R; Pfennig A; Nidetzky B; Kratzer R
    J Biotechnol; 2017 Sep; 257():110-117. PubMed ID: 27913217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].
    Jiang P; Bao X; Salmeron M
    Acc Chem Res; 2015 May; 48(5):1524-31. PubMed ID: 25856470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations.
    Chughtai AH; Ahmad N; Younus HA; Laypkov A; Verpoort F
    Chem Soc Rev; 2015 Oct; 44(19):6804-49. PubMed ID: 25958955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.