These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29219204)

  • 21. In Situ CVD Derived Co-N-C Composite as Highly Efficient Cathode for Flexible Li-O
    Yang ZD; Yang XY; Liu T; Chang ZW; Yin YB; Zhang XB; Yan JM; Jiang Q
    Small; 2018 Oct; 14(43):e1800590. PubMed ID: 30047210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries.
    Sun B; Huang X; Chen S; Munroe P; Wang G
    Nano Lett; 2014 Jun; 14(6):3145-52. PubMed ID: 24854426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Li-O₂/air battery using an inorganic solid-state air cathode.
    Wang X; Zhu D; Song M; Cai S; Zhang L; Chen Y
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11204-10. PubMed ID: 24959838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. V
    Zhu Y; Yang M; Huang Q; Wang D; Yu R; Wang J; Zheng Z; Wang D
    Adv Mater; 2020 Feb; 32(7):e1906205. PubMed ID: 31922649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.
    Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K
    J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.
    Zhang Y; Wang L; Guo Z; Xu Y; Wang Y; Peng H
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4487-91. PubMed ID: 26929017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Interconnected Network Architecture with Homogeneously Dispersed Carbon Nanotubes and Layered MoS
    Hu A; Long J; Shu C; Liang R; Li J
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34077-34086. PubMed ID: 30207681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.
    Huang Y; Ip WS; Lau YY; Sun J; Zeng J; Yeung NSS; Ng WS; Li H; Pei Z; Xue Q; Wang Y; Yu J; Hu H; Zhi C
    ACS Nano; 2017 Sep; 11(9):8953-8961. PubMed ID: 28813141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon-, binder-, and precious metal-free cathodes for non-aqueous lithium-oxygen batteries: nanoflake-decorated nanoneedle oxide arrays.
    Riaz A; Jung KN; Chang W; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17815-22. PubMed ID: 25280376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Array of TiN@Pt
    Luo WB; Pham TV; Guo HP; Liu HK; Dou SX
    ACS Nano; 2017 Feb; 11(2):1747-1754. PubMed ID: 28128929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile Synthesis of Hierarchical Porous Three-Dimensional Free-Standing MnCo
    Wu H; Sun W; Wang Y; Wang F; Liu J; Yue X; Wang Z; Qiao J; Rooney DW; Sun K
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12355-12365. PubMed ID: 28326762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monodispersed Ruthenium Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for an Efficient Lithium-Oxygen Battery.
    Dai W; Liu Y; Wang M; Lin M; Lian X; Luo Y; Yang J; Chen W
    ACS Appl Mater Interfaces; 2021 May; 13(17):19915-19926. PubMed ID: 33881825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen-Based Anion Redox for Lithium Batteries.
    Li M; Bi X; Amine K; Lu J
    Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Li-Air Battery with Ultralong Cycle Life in Ambient Air.
    Wang L; Pan J; Zhang Y; Cheng X; Liu L; Peng H
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29194803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries.
    Zhou Y; Gu Q; Li Y; Tao L; Tan H; Yin K; Zhou J; Guo S
    Nano Lett; 2021 Jun; 21(11):4861-4867. PubMed ID: 34044536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries.
    Xu JJ; Wang ZL; Xu D; Zhang LL; Zhang XB
    Nat Commun; 2013; 4():2438. PubMed ID: 24052126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O
    Deng H; Qiao Y; Wu S; Qiu F; Zhang N; He P; Zhou H
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4908-4914. PubMed ID: 30387593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium-Oxygen Batteries.
    Xu JJ; Chang ZW; Yin YB; Zhang XB
    ACS Cent Sci; 2017 Jun; 3(6):598-604. PubMed ID: 28691071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.