These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29219350)

  • 41. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects.
    Wang L; Zhang JH; Liu C; Li M; Qi FH
    Phys Rev E; 2016 Jun; 93(6):062217. PubMed ID: 27415265
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theory of Neuromorphic Computing by Waves: Machine Learning by Rogue Waves, Dispersive Shocks, and Solitons.
    Marcucci G; Pierangeli D; Conti C
    Phys Rev Lett; 2020 Aug; 125(9):093901. PubMed ID: 32915624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.
    Chan HN; Malomed BA; Chow KW; Ding E
    Phys Rev E; 2016 Jan; 93(1):012217. PubMed ID: 26871083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics.
    Tlidi M; Panajotov K
    Chaos; 2017 Jan; 27(1):013119. PubMed ID: 28147505
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Triggering rogue waves in opposing currents.
    Onorato M; Proment D; Toffoli A
    Phys Rev Lett; 2011 Oct; 107(18):184502. PubMed ID: 22107634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of rogue waves from a locally perturbed condensate.
    Gelash AA
    Phys Rev E; 2018 Feb; 97(2-1):022208. PubMed ID: 29548089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Parity-time-symmetric rational vector rogue waves of the n-component nonlinear Schrödinger equation.
    Zhang G; Ling L; Yan Z; Konotop VV
    Chaos; 2021 Jun; 31(6):063120. PubMed ID: 34241286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability.
    Närhi M; Wetzel B; Billet C; Toenger S; Sylvestre T; Merolla JM; Morandotti R; Dias F; Genty G; Dudley JM
    Nat Commun; 2016 Dec; 7():13675. PubMed ID: 27991513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
    Wang LH; Porsezian K; He JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical rogue waves associated with the negative coherent coupling in an isotropic medium.
    Sun WR; Tian B; Jiang Y; Zhen HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023205. PubMed ID: 25768624
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rogue wave spectra of the Kundu-Eckhaus equation.
    Bayındır C
    Phys Rev E; 2016 Jun; 93(6):062215. PubMed ID: 27415263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.
    Weerasekara G; Tokunaga A; Terauchi H; Eberhard M; Maruta A
    Opt Express; 2015 Jan; 23(1):143-53. PubMed ID: 25835661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation.
    Wang L; Zhang JH; Wang ZQ; Liu C; Li M; Qi FH; Guo R
    Phys Rev E; 2016 Jan; 93(1):012214. PubMed ID: 26871080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
    Loomba S; Kaur H; Gupta R; Kumar CN; Raju TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052915. PubMed ID: 25353869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Topological control of extreme waves.
    Marcucci G; Pierangeli D; Agranat AJ; Lee RK; DelRe E; Conti C
    Nat Commun; 2019 Nov; 10(1):5090. PubMed ID: 31704911
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rogue waves and rational solutions of the Hirota equation.
    Ankiewicz A; Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transmission of rogue wave signals through a modified Noguchi electrical transmission network.
    Kengne E; Liu WM
    Phys Rev E; 2019 Jun; 99(6-1):062222. PubMed ID: 31330672
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.
    El Koussaifi R; Tikan A; Toffoli A; Randoux S; Suret P; Onorato M
    Phys Rev E; 2018 Jan; 97(1-1):012208. PubMed ID: 29448489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting ocean rogue waves from point measurements: An experimental study for unidirectional waves.
    Cousins W; Onorato M; Chabchoub A; Sapsis TP
    Phys Rev E; 2019 Mar; 99(3-1):032201. PubMed ID: 30999506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.