These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29219419)

  • 1. Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb.
    Li G; Morozov SI; Zhang Q; An Q; Zhai P; Snyder GJ
    Phys Rev Lett; 2017 Nov; 119(21):215503. PubMed ID: 29219419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superstrengthening Bi_{2}Te_{3} through Nanotwinning.
    Li G; Aydemir U; Morozov SI; Wood M; An Q; Zhai P; Zhang Q; Goddard WA; Snyder GJ
    Phys Rev Lett; 2017 Aug; 119(8):085501. PubMed ID: 28952748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superstrength through Nanotwinning.
    An Q; Goddard WA; Xie KY; Sim GD; Hemker KJ; Munhollon T; Toksoy MF; Haber RA
    Nano Lett; 2016 Dec; 16(12):7573-7579. PubMed ID: 27960511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large indentation strain-stiffening in nanotwinned cubic boron nitride.
    Li B; Sun H; Chen C
    Nat Commun; 2014 Sep; 5():4965. PubMed ID: 25216236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro- and Macromechanical Properties of Thermoelectric Lead Chalcogenides.
    Li G; Aydemir U; Duan B; Agne MT; Wang H; Wood M; Zhang Q; Zhai P; Goddard WA; Snyder GJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40488-40496. PubMed ID: 29098851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain Boundaries Softening Thermoelectric Oxide BiCuSeO.
    Li G; Hao S; Morozov SI; Zhai P; Zhang Q; Goddard WA; Snyder GJ
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6772-6777. PubMed ID: 29402078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics.
    Zhou Y; Gong X; Xu B; Hu M
    Nanoscale; 2017 Jul; 9(28):9987-9996. PubMed ID: 28681894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb".
    Yang B; Peng X; Huang C; Zhao Y; Fu T
    Phys Rev Lett; 2019 Sep; 123(11):119601. PubMed ID: 31573243
    [No Abstract]   [Full Text] [Related]  

  • 9. Synergistic Performance of Thermoelectric and Mechanical in Nanotwinned High-Entropy Semiconductors AgMnGePbSbTe
    Ma Z; Luo Y; Dong J; Liu Y; Zhang D; Li W; Li C; Wei Y; Jiang Q; Li X; Yin H; Dravid VP; Zhang Q; Chen S; Yan Q; Yang J; Kanatzidis MG
    Adv Mater; 2024 Nov; 36(45):e2407982. PubMed ID: 39246135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic Enhancement of Strength-Ductility and Thermoelectric Properties of Ag
    Wang H; Feng X; Lu Z; Duan B; Yang H; Wu L; Zhou L; Zhai P; Snyder GJ; Li G; Zhang Q
    Adv Mater; 2023 Sep; 35(35):e2302969. PubMed ID: 37192421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation and Failure Mechanisms of Element-Substituted Thermoelectric Type-I and Type-VIII Clathrates.
    Huang X; Zhang X; Lu Z; Li W; Duan B; Zhai P; Li G
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38598686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic Investigation of Anisotropic Nanoindentation Behavior of Nanotwinned Aluminum Containing Inclined Twin Boundaries.
    Liu Y; Duan Y; Zhang J
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Hall-Petch Type Behavior in the Elastic Strain Limit of Nanotwinned Gold Nanowires.
    Wang J; Sansoz F; Deng C; Xu G; Han G; Mao SX
    Nano Lett; 2015 Jun; 15(6):3865-70. PubMed ID: 25950984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme Mechanics of Probing the Ultimate Strength of Nanotwinned Diamond.
    Li B; Sun H; Chen C
    Phys Rev Lett; 2016 Sep; 117(11):116103. PubMed ID: 27661704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive Description of Extra Strengthening in Gradient Nanotwinned Metals.
    Chen W; Wan P; Zhao Q; Zhou H
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detwinning Mechanism for Nanotwinned Cubic Boron Nitride with Unprecedented Strength: A First-Principles Study.
    Yang B; Peng X; Sun S; Huang C; Yin D; Chen X; Fu T
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness.
    Duan F; Lin Y; Pan J; Zhao L; Guo Q; Zhang D; Li Y
    Sci Adv; 2021 Jun; 7(27):. PubMed ID: 34193428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Assessment of CdTe as a Tunnel Barrier at the α-Sn/InSb Interface.
    Jardine MJA; Dardzinski D; Yu M; Purkayastha A; Chen AH; Chang YH; Engel A; Strocov VN; Hocevar M; Palmstro M C; Frolov SM; Marom N
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16288-16298. PubMed ID: 36940162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional InSb/GaAs- and InSb/InP-based tandem photovoltaic device with matched bandgap.
    Xie M; Liu X; Li Y; Li X
    Nanoscale; 2022 Feb; 14(5):1954-1961. PubMed ID: 35050297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced ZT of In
    Gharleghi A; Hung PC; Lin FH; Liu CJ
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35123-35131. PubMed ID: 27966865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.