BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29219421)

  • 1. Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass.
    Zhu F; Hirata A; Liu P; Song S; Tian Y; Han J; Fujita T; Chen M
    Phys Rev Lett; 2017 Nov; 119(21):215501. PubMed ID: 29219421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses.
    Ichitsubo T; Matsubara E; Chen HS; Saida J; Yamamoto T; Nishiyama N
    J Chem Phys; 2006 Oct; 125(15):154502. PubMed ID: 17059267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy.
    Liu YH; Wang D; Nakajima K; Zhang W; Hirata A; Nishi T; Inoue A; Chen MW
    Phys Rev Lett; 2011 Mar; 106(12):125504. PubMed ID: 21517325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy.
    Im S; Chen Z; Johnson JM; Zhao P; Yoo GH; Park ES; Wang Y; Muller DA; Hwang J
    Ultramicroscopy; 2018 Dec; 195():189-193. PubMed ID: 30384139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass.
    Zhu F; Nguyen HK; Song SX; Aji DP; Hirata A; Wang H; Nakajima K; Chen MW
    Nat Commun; 2016 May; 7():11516. PubMed ID: 27158084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using fluctuation microscopy to characterize structural order in metallic glasses.
    Li J; Gu X; Hufnagel TC
    Microsc Microanal; 2003 Dec; 9(6):509-15. PubMed ID: 14750985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses.
    Zhu F; Song S; Reddy KM; Hirata A; Chen M
    Nat Commun; 2018 Sep; 9(1):3965. PubMed ID: 30262846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Structural Evolution during Ultrastable Metallic Glass Formation.
    Luo P; Zhu F; Lv YM; Lu Z; Shen LQ; Zhao R; Sun YT; Vaughan GBM; di Michiel M; Ruta B; Bai HY; Wang WH
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40098-40105. PubMed ID: 34375527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric frustration of icosahedron in metallic glasses.
    Hirata A; Kang LJ; Fujita T; Klumov B; Matsue K; Kotani M; Yavari AR; Chen MW
    Science; 2013 Jul; 341(6144):376-9. PubMed ID: 23845945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Viscoelastic Heterogeneity at the Nanoscale in Metallic Glasses by Static Force Spectroscopy.
    Gao M; Perepezko JH
    Nano Lett; 2020 Oct; 20(10):7558-7565. PubMed ID: 32970446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.
    He L; Zhang P; Besser MF; Kramer MJ; Voyles PM
    Microsc Microanal; 2015 Aug; 21(4):1026-33. PubMed ID: 26036263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous structural changes correlated to local atomic order in thermal rejuvenation process of Cu-Zr metallic glass.
    Wakeda M; Saida J
    Sci Technol Adv Mater; 2019; 20(1):632-642. PubMed ID: 31258826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using
    Sarkar R; Ebner C; Izadi E; Rentenberger C; Rajagopalan J
    Mater Res Lett; 2017 May; 5(3):135-143. PubMed ID: 28382229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure Analyses of Fe-based Metallic Glasses by Electron Diffraction.
    Hirata A; Hirotsu Y
    Materials (Basel); 2010 Dec; 3(12):5263-5273. PubMed ID: 28883381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of local atomic order in a metallic glass.
    Hirata A; Guan P; Fujita T; Hirotsu Y; Inoue A; Yavari AR; Sakurai T; Chen M
    Nat Mater; 2011 Jan; 10(1):28-33. PubMed ID: 21102454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses.
    Murali P; Guo TF; Zhang YW; Narasimhan R; Li Y; Gao HJ
    Phys Rev Lett; 2011 Nov; 107(21):215501. PubMed ID: 22181893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hidden topological order and its correlation with glass-forming ability in metallic glasses.
    Wu ZW; Li MZ; Wang WH; Liu KX
    Nat Commun; 2015 Jan; 6():6035. PubMed ID: 25580857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-density to high-density transition in Ce75Al23Si2 metallic glass.
    Zeng QS; Fang YZ; Lou HB; Gong Y; Wang XD; Yang K; Li AG; Yan S; Lathe C; Wu FM; Yu XH; Jiang JZ
    J Phys Condens Matter; 2010 Sep; 22(37):375404. PubMed ID: 21403196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of elastic heterogeneity during aging in metallic glasses.
    Fan Y; Iwashita T; Egami T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062313. PubMed ID: 25019782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal expansion of Pd-based metallic glasses by ab initio methods and high energy X-ray diffraction.
    Evertz S; Music D; Schnabel V; Bednarcik J; Schneider JM
    Sci Rep; 2017 Nov; 7(1):15744. PubMed ID: 29146969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.