These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29219439)

  • 1. Strongly Asymmetric Spectroscopy in Plasmon-Exciton Hybrid Systems due to Interference-Induced Energy Repartitioning.
    Ding SJ; Li X; Nan F; Zhong YT; Zhou L; Xiao X; Wang QQ; Zhang Z
    Phys Rev Lett; 2017 Oct; 119(17):177401. PubMed ID: 29219439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vibronic absorption spectra and exciton dynamics of plasmon-exciton hybrid systems in the regimes ranged from Fano antiresonance to Rabi-like splitting.
    Zhang B; Liang W
    J Chem Phys; 2020 Jan; 152(1):014102. PubMed ID: 31914739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating the fluorescence of exciton-plasmon hybrids in the strong coupling regime with dual resonance enhancements.
    Qiu YH; Ding SJ; Nan F; Wang Q; Chen K; Hao ZH; Zhou L; Li X; Wang QQ
    Nanoscale; 2019 Nov; 11(45):22033-22041. PubMed ID: 31714554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS
    Ai R; Xia X; Zhang H; Chui KK; Wang J
    ACS Nano; 2023 Feb; 17(3):2356-2367. PubMed ID: 36662164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting.
    Pelton M; Storm SD; Leng H
    Nanoscale; 2019 Aug; 11(31):14540-14552. PubMed ID: 31364684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling.
    Luo Y; Wang Y; Liu M; Zhu H; Chen O; Zou S; Zhao J
    J Phys Chem Lett; 2020 Apr; 11(7):2449-2456. PubMed ID: 32155339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear features of Fano resonance: a QM/EM study.
    Sun J; Ding Z; Yu Y; Liang W
    Phys Chem Chem Phys; 2021 Aug; 23(30):15994-16004. PubMed ID: 34318831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites.
    DeLacy BG; Miller OD; Hsu CW; Zander Z; Lacey S; Yagloski R; Fountain AW; Valdes E; Anquillare E; Soljačić M; Johnson SG; Joannopoulos JD
    Nano Lett; 2015 Apr; 15(4):2588-93. PubMed ID: 25723653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-Exciton Coupling Using DNA Templates.
    Roller EM; Argyropoulos C; Högele A; Liedl T; Pilo-Pais M
    Nano Lett; 2016 Sep; 16(9):5962-6. PubMed ID: 27531635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS
    Wang M; Krasnok A; Zhang T; Scarabelli L; Liu H; Wu Z; Liz-Marzán LM; Terrones M; Alù A; Zheng Y
    Adv Mater; 2018 May; 30(22):e1705779. PubMed ID: 29659088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.
    Sun J; Li G; Liang W
    Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures.
    Abid I; Bohloul A; Najmaei S; Avendano C; Liu HL; Péchou R; Mlayah A; Lou J
    Nanoscale; 2016 Apr; 8(15):8151-9. PubMed ID: 27029770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes.
    Lin L; Wang M; Wei X; Peng X; Xie C; Zheng Y
    Nano Lett; 2016 Dec; 16(12):7655-7663. PubMed ID: 27960522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect.
    Zhang W; Govorov AO; Bryant GW
    Phys Rev Lett; 2006 Oct; 97(14):146804. PubMed ID: 17155282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double Rabi Splitting in a Strongly Coupled System of Core-Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores.
    Melnikau D; Govyadinov AA; Sánchez-Iglesias A; Grzelczak M; Nabiev IR; Liz-Marzán LM; Rakovich YP
    J Phys Chem Lett; 2019 Oct; 10(20):6137-6143. PubMed ID: 31557038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon resonance energy transfer and plexcitonic solar cell.
    Nan F; Ding SJ; Ma L; Cheng ZQ; Zhong YT; Zhang YF; Qiu YH; Li X; Zhou L; Wang QQ
    Nanoscale; 2016 Aug; 8(32):15071-8. PubMed ID: 27481652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano resonance Rabi splitting of surface plasmons.
    Liu Z; Li J; Liu Z; Li W; Li J; Gu C; Li ZY
    Sci Rep; 2017 Aug; 7(1):8010. PubMed ID: 28808350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Rabi splitting of mixed plasmon-exciton states in small plasmonic moiré cavities.
    Ates S; Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2020 Oct; 45(20):5824-5827. PubMed ID: 33057294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime.
    Scott Z; Muhammad S; Shahbazyan TV
    J Chem Phys; 2022 May; 156(19):194702. PubMed ID: 35597643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fano asymmetry in zero-detuned exciton-plasmon systems.
    Nodar Á; Neuman T; Zhang Y; Aizpurua J; Esteban R
    Opt Express; 2023 Mar; 31(6):10297-10319. PubMed ID: 37157580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.