BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2921982)

  • 1. Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors.
    Howell RW; Rao DV; Sastry KS
    Med Phys; 1989; 16(1):66-74. PubMed ID: 2921982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-tumor radionuclide therapy dosimetry: new paradigms in view of tumor microenvironment and angiogenesis.
    Zhu X; Palmer MR; Makrigiorgos GM; Kassis AI
    Med Phys; 2010 Jun; 37(6):2974-84. PubMed ID: 20632610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres.
    Bardiès M; Chatal JF
    Phys Med Biol; 1994 Jun; 39(6):961-81. PubMed ID: 15551573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dosimetry and radiation dose distribution in tumors for radioimmunotherapy: the effect of tumor size].
    Fujimori K; Furudate M
    Kaku Igaku; 1994 Mar; 31(3):241-8. PubMed ID: 8176862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor dosimetry in radioimmunotherapy: methods of calculation for beta particles.
    Leichner PK; Kwok CS
    Med Phys; 1993; 20(2 Pt 2):529-34. PubMed ID: 8492761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution.
    Uusijärvi H; Bernhardt P; Ericsson T; Forssell-Aronsson E
    Med Phys; 2006 Sep; 33(9):3260-9. PubMed ID: 17022220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorbed dose distribution of the auger emitters 67GA and 125I and the beta-emitters 67CU, 90Y, 131I, and 186RE as a function of tumor size, uptake, and intracellular distribution.
    van Dieren EB; Plaizier MA; van Lingen A; Roos JC; Barendsen GW; Teule GJ
    Int J Radiat Oncol Biol Phys; 1996 Aug; 36(1):197-204. PubMed ID: 8823276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosimetry models for radioimmunotherapy.
    Langmuir VK; Sutherland RM
    Med Phys; 1988; 15(6):867-73. PubMed ID: 3237144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution.
    Bao A; Zhao X; Phillips WT; Woolley FR; Otto RA; Goins B; Hevezi JM
    Med Phys; 2005 Jan; 32(1):200-8. PubMed ID: 15719971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab' fragments in a human colonic cancer model.
    Behr TM; Béhé M; Stabin MG; Wehrmann E; Apostolidis C; Molinet R; Strutz F; Fayyazi A; Wieland E; Gratz S; Koch L; Goldenberg DM; Becker W
    Cancer Res; 1999 Jun; 59(11):2635-43. PubMed ID: 10363986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative study of radionuclide characteristics for radioimmunotherapy from 3D reconstructions using serial autoradiography.
    Muthuswamy MS; Roberson PL; Ten Haken RK; Buchsbaum DJ
    Int J Radiat Oncol Biol Phys; 1996 Apr; 35(1):165-72. PubMed ID: 8641915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the red marrow dosimetry in radioimmunotherapy: an experimental investigation of factors influencing the radiation-induced myelotoxicity in therapy with beta-, Auger/conversion electron-, or alpha-emitters.
    Behr TM; Sgouros G; Stabin MG; Béhé M; Angerstein C; Blumenthal RD; Apostolidis C; Molinet R; Sharkey RM; Koch L; Goldenberg DM; Becker W
    Clin Cancer Res; 1999 Oct; 5(10 Suppl):3031s-3043s. PubMed ID: 10541340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons.
    Aghevlian S; Boyle AJ; Reilly RM
    Adv Drug Deliv Rev; 2017 Jan; 109():102-118. PubMed ID: 26705852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniature thermoluminescent dosimeter absorbed dose measurements in tumor phantom models.
    Wessels BW; Griffith MH
    J Nucl Med; 1986 Aug; 27(8):1308-14. PubMed ID: 3734904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta dose-rate distributions in microscopic spherical tumors for intraperitoneal radioimmunotherapy.
    Syme A; McQuarrie S; Fallone BG
    Int J Radiat Oncol Biol Phys; 2003 Aug; 56(5):1495-506. PubMed ID: 12873695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides.
    O'Donoghue JA; Bardiès M; Wheldon TE
    J Nucl Med; 1995 Oct; 36(10):1902-9. PubMed ID: 7562062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images.
    Flynn AA; Pedley RB; Green AJ; Boxer GM; Boden R; Begent RH
    Cancer Biother Radiopharm; 2001 Oct; 16(5):391-400. PubMed ID: 11776756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy.
    Bordes J; Incerti S; Mora-Ramirez E; Tranel J; Rossi C; Bezombes C; Bordenave J; Bardiès M; Brown R; Bordage MC
    Med Phys; 2020 Oct; 47(10):5222-5234. PubMed ID: 32623743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ABCs of radioisotopes used for radioimmunotherapy: alpha- and beta-emitters.
    Waldmann T
    Leuk Lymphoma; 2003; 44 Suppl 3():S107-13. PubMed ID: 15202533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of biological vector characteristics and nanoparticle dimensions for radioimmunotherapy with radioactive nanoparticles.
    Nuttens VE; Wéra AC; Bouchat V; Lucas S
    Appl Radiat Isot; 2008 Feb; 66(2):168-72. PubMed ID: 17913502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.