These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29220151)

  • 1. Integration of Enzymes in Polyaniline-Sensitized 3D Inverse Opal TiO
    Riedel M; Lisdat F
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):267-277. PubMed ID: 29220151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting.
    Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation.
    Riedel M; Sabir N; Scheller FW; Parak WJ; Lisdat F
    Nanoscale; 2017 Feb; 9(8):2814-2823. PubMed ID: 28155960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of sub-100 nm mesoscale inverse opal films and their application in dye-sensitized solar cell electrodes.
    Lee JW; Lee J; Kim C; Cho CY; Moon JH
    Sci Rep; 2014 Oct; 4():6804. PubMed ID: 25348114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differently substituted sulfonated polyanilines: the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase.
    Sarauli D; Xu C; Dietzel B; Schulz B; Lisdat F
    Acta Biomater; 2013 Sep; 9(9):8290-8. PubMed ID: 23777884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multilayered sulfonated polyaniline network with entrapped pyrroloquinoline quinone-dependent glucose dehydrogenase: tunable direct bioelectrocatalysis.
    Sarauli D; Xu C; Dietzel B; Schulz B; Lisdat F
    J Mater Chem B; 2014 Jun; 2(21):3196-3203. PubMed ID: 32261581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D FTO/FTO-Nanocrystal/TiO
    Wang Z; Li X; Ling H; Tan CK; Yeo LP; Grimsdale AC; Tok AIY
    Small; 2018 May; 14(20):e1800395. PubMed ID: 29665266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution.
    Lee S; Lee Y; Kim DH; Moon JH
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12526-32. PubMed ID: 24266769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-electrode architectures for enhanced direct bioelectrocatalysis of pyrroloquinoline quinone-dependent glucose dehydrogenase.
    Sarauli D; Peters K; Xu C; Schulz B; Fattakhova-Rohlfing D; Lisdat F
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17887-93. PubMed ID: 25230089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tandem Solar Biofuel Cell: Harnessing Energy from Light and Biofuels.
    Riedel M; Höfs S; Ruff A; Schuhmann W; Lisdat F
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):2078-2083. PubMed ID: 33006812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting defects in TiO
    Yew R; Karuturi SK; Liu J; Tan HH; Wu Y; Jagadish C
    Opt Express; 2019 Jan; 27(2):761-773. PubMed ID: 30696157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical twin-scale inverse opal TiO2 electrodes for dye-sensitized solar cells.
    Cho CY; Moon JH
    Langmuir; 2012 Jun; 28(25):9372-7. PubMed ID: 22676971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO2 inverse opal nano-networks.
    Kim K; Thiyagarajan P; Ahn HJ; Kim SI; Jang JH
    Nanoscale; 2013 Jul; 5(14):6254-60. PubMed ID: 23733045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications.
    Lee JW; Moon JH
    Nanoscale; 2015 Mar; 7(12):5164-8. PubMed ID: 25634556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture.
    Gladisch J; Sarauli D; Schäfer D; Dietzel B; Schulz B; Lisdat F
    Sci Rep; 2016 Jan; 6():19858. PubMed ID: 26822141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes.
    Wettstein Ch; Möhwald H; Lisdat F
    Bioelectrochemistry; 2012 Dec; 88():97-102. PubMed ID: 22814119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Z-Scheme-Inspired Photobioelectrochemical H
    Riedel M; Wersig J; Ruff A; Schuhmann W; Zouni A; Lisdat F
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):801-805. PubMed ID: 30452104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.
    Hori K; Zhang Y; Tusamalee P; Nakazawa N; Yoshihara Y; Wang R; Toyoda T; Hayase S; Shen Q
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29941828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.
    Kim HN; Yoo H; Moon JH
    Nanoscale; 2013 May; 5(10):4200-4. PubMed ID: 23536037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.