These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29220189)

  • 1. Plasmon-Induced Ultrafast Hydrogen Production in Liquid Water.
    Yan L; Xu J; Wang F; Meng S
    J Phys Chem Lett; 2018 Jan; 9(1):63-69. PubMed ID: 29220189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles.
    Yan L; Wang F; Meng S
    ACS Nano; 2016 May; 10(5):5452-8. PubMed ID: 27127849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Induced Water Splitting on Ag-Alloyed Pt Single-Atom Catalysts.
    Zhang Y; Chen D; Meng W; Li S; Meng S
    Front Chem; 2021; 9():742794. PubMed ID: 34760868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of rapid hydrogen production from water using aluminum clusters as catalyzers.
    Shimojo F; Ohmura S; Kalia RK; Nakano A; Vashishta P
    Phys Rev Lett; 2010 Mar; 104(12):126102. PubMed ID: 20366551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-point Attack of Two H
    Chen J; Luo Z
    Chemphyschem; 2019 Feb; 20(3):499-505. PubMed ID: 30489009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pathway for serial proton supply to the active site of nitrogenase: enhanced density functional modeling of the Grotthuss mechanism.
    Dance I
    Dalton Trans; 2015 Nov; 44(41):18167-86. PubMed ID: 26419970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures.
    Chen HM; Chen CK; Chen CJ; Cheng LC; Wu PC; Cheng BH; Ho YZ; Tseng ML; Hsu YY; Chan TS; Lee JF; Liu RS; Tsai DP
    ACS Nano; 2012 Aug; 6(8):7362-72. PubMed ID: 22849358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of aluminum clusters with water.
    Ohmura S; Shimojo F; Kalia RK; Kunaseth M; Nakano A; Vashishta P
    J Chem Phys; 2011 Jun; 134(24):244702. PubMed ID: 21721652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Plasmon-Assisted Solar Energy Conversion.
    Dodekatos G; Schünemann S; Tüysüz H
    Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array.
    Li J; Cushing SK; Zheng P; Meng F; Chu D; Wu N
    Nat Commun; 2013; 4():2651. PubMed ID: 24136178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
    Gessner O; Gühr M
    Acc Chem Res; 2016 Jan; 49(1):138-45. PubMed ID: 26641490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.
    Yu S; Kim YH; Lee SY; Song HD; Yi J
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11203-7. PubMed ID: 25169852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-assisted water splitting using two sides of the same SrTiO₃ single-crystal substrate: conversion of visible light to chemical energy.
    Zhong Y; Ueno K; Mori Y; Shi X; Oshikiri T; Murakoshi K; Inoue H; Misawa H
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10350-4. PubMed ID: 24988943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.