These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29220414)

  • 21. A new defibrillator mode to reduce chest compression interruptions for health care professionals and lay rescuers: a pilot study in manikins.
    Barash DM; Raymond RP; Tan Q; Silver AE
    Prehosp Emerg Care; 2011; 15(1):88-97. PubMed ID: 21091330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An automatic system for the comprehensive retrospective analysis of cardiac rhythms in resuscitation episodes.
    Rad AB; Eftestøl T; Irusta U; Kvaløy JT; Wik L; Kramer-Johansen J; Katsaggelos AK; Engan K
    Resuscitation; 2018 Jan; 122():6-12. PubMed ID: 29122647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation.
    Ristagno G; Tang W; Russell JK; Jorgenson D; Wang H; Sun S; Weil MH
    Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest.
    Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W
    Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions in cardiac arrest resuscitation.
    Cunningham LM; Mattu A; O'Connor RE; Brady WJ
    Am J Emerg Med; 2012 Oct; 30(8):1630-8. PubMed ID: 22633716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest.
    Ikeno F; Kaneda H; Hongo Y; Sakanoue Y; Nolasco C; Emami S; Lyons J; Rezaee M
    Resuscitation; 2006 Jan; 68(1):109-18. PubMed ID: 16325982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doubling survival and improving clinical outcomes using a left ventricular assist device instead of chest compressions for resuscitation after prolonged cardiac arrest: a large animal study.
    Derwall M; Brücken A; Bleilevens C; Ebeling A; Föhr P; Rossaint R; Kern KB; Nix C; Fries M
    Crit Care; 2015 Mar; 19(1):123. PubMed ID: 25886909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrocardiogram-based pulse prediction during cardiopulmonary resuscitation.
    Kwok H; Coult J; Blackwood J; Bhandari S; Kudenchuk P; Rea T
    Resuscitation; 2020 Feb; 147():104-111. PubMed ID: 31790755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond ventricular fibrillation analysis: comprehensive waveform analysis for all cardiac rhythms occurring during resuscitation.
    Alonso E; Eftestøl T; Aramendi E; Kramer-Johansen J; Skogvoll E; Nordseth T
    Resuscitation; 2014 Nov; 85(11):1541-8. PubMed ID: 25195072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG
    Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel hands-free carotid ultrasound detects low-flow cardiac output in a swine model of pulseless electrical activity arrest.
    Larabee TM; Little CM; Raju BI; Cohen-Solal E; Erkamp R; Wuthrich S; Petruzzello J; Nakagawa M; Ayati S
    Am J Emerg Med; 2011 Nov; 29(9):1141-6. PubMed ID: 20708880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic identification of return of spontaneous circulation during cardiopulmonary resuscitation.
    Risdal M; Aase SO; Kramer-Johansen J; Eftestøl T
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):60-8. PubMed ID: 18232347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coronary perfusion pressure during external chest compression in pseudo-EMD, comparison of systolic versus diastolic synchronization.
    Paradis NA; Halperin HR; Zviman M; Barash D; Quan W; Freeman G
    Resuscitation; 2012 Oct; 83(10):1287-91. PubMed ID: 22366351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-perfusing cardiac rhythms in asphyxiated newborn piglets.
    Solevåg AL; Luong D; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    PLoS One; 2019; 14(4):e0214506. PubMed ID: 30947278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic detection of chest compressions for the assessment of CPR-quality parameters.
    Ayala U; Eftestøl T; Alonso E; Irusta U; Aramendi E; Wali S; Kramer-Johansen J
    Resuscitation; 2014 Jul; 85(7):957-63. PubMed ID: 24746788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurologically intact survival in a porcine model of cardiac arrest: manual cardiopulmonary resuscitation vs. LifeBelt cardiopulmonary resuscitation.
    Youngquist ST; Niemann JT; Allread WG; Heyming T; Rosborough JP
    Prehosp Emerg Care; 2010; 14(3):324-8. PubMed ID: 20388031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of CPR outcome predictors between rhythmic abdominal compression and continuous chest compression CPR techniques.
    Kammeyer RM; Pargett MS; Rundell AE
    Emerg Med J; 2014 May; 31(5):394-400. PubMed ID: 23471166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchronized Chest Compressions for Pseudo-PEA: Proof of Concept and a Synching Algorithm.
    Marill KA; Menegazzi JJ; Koller AC; Sundermann ML; Salcido DD
    Prehosp Emerg Care; 2020; 24(5):721-729. PubMed ID: 31697562
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.