These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 29220687)
21. Surface-enhanced fluorescence from fluorophore-assembled monolayers by using Ag@SiO2 nanoparticles. Zhang R; Wang Z; Song C; Yang J; Li J; Sadaf A; Cui Y Chemphyschem; 2011 Apr; 12(5):992-8. PubMed ID: 21442706 [TBL] [Abstract][Full Text] [Related]
22. Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles. Mohamed AL; El-Naggar ME; Shaheen TI; Hassabo AG Int J Biol Macromol; 2017 Feb; 95():429-437. PubMed ID: 27865954 [TBL] [Abstract][Full Text] [Related]
23. A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. Lismont M; Páez CA; Dreesen L J Colloid Interface Sci; 2015 Jun; 447():40-9. PubMed ID: 25697687 [TBL] [Abstract][Full Text] [Related]
24. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B; Rostami A; Momeni SS Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505 [TBL] [Abstract][Full Text] [Related]
25. Improved Raman and photoluminescence sensitivity achieved using bifunctional Ag@SiO₂ nanocubes. Kha NM; Chen CH; Su WN; Rick J; Hwang BJ Phys Chem Chem Phys; 2015 Sep; 17(33):21226-35. PubMed ID: 25611788 [TBL] [Abstract][Full Text] [Related]
26. Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. Kim YH; Lee DK; Cha HG; Kim CW; Kang YC; Kang YS J Phys Chem B; 2006 Dec; 110(49):24923-8. PubMed ID: 17149913 [TBL] [Abstract][Full Text] [Related]
27. Synthesis, Characterization, Biomedical Application, Molecular Dynamic Simulation and Molecular Docking of Schiff Base Complex of Cu(II) Supported on Fe Eshaghi Malekshah R; Fahimirad B; Khaleghian A Int J Nanomedicine; 2020; 15():2583-2603. PubMed ID: 32368042 [TBL] [Abstract][Full Text] [Related]
28. Large-scale preparation of strawberry-like, AgNP-doped SiO2 microspheres using the electrospraying method. Ma Z; Ji H; Tan D; Dong G; Teng Y; Zhou J; Guan M; Qiu J; Zhang M Nanotechnology; 2011 Jul; 22(30):305307. PubMed ID: 21719963 [TBL] [Abstract][Full Text] [Related]
29. Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications. Li H; Zhang J; Zhou X; Lu G; Yin Z; Li G; Wu T; Boey F; Venkatraman SS; Zhang H Langmuir; 2010 Apr; 26(8):5603-9. PubMed ID: 19947614 [TBL] [Abstract][Full Text] [Related]
30. Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse. Kung ML; Tai MH; Lin PY; Wu DC; Wu WJ; Yeh BW; Hung HS; Kuo CH; Chen YW; Hsieh SL; Hsieh S Colloids Surf B Biointerfaces; 2017 Jul; 155():399-407. PubMed ID: 28460302 [TBL] [Abstract][Full Text] [Related]
31. Antibacterial activity of silver nanoparticles synthesized from serine. Jayaprakash N; Judith Vijaya J; John Kennedy L; Priadharsini K; Palani P Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():316-322. PubMed ID: 25686955 [TBL] [Abstract][Full Text] [Related]
32. Silica-silver core-shell particles for antibacterial textile application. Nischala K; Rao TN; Hebalkar N Colloids Surf B Biointerfaces; 2011 Jan; 82(1):203-8. PubMed ID: 20864320 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Pugazhendhi A; Prabakar D; Jacob JM; Karuppusamy I; Saratale RG Microb Pathog; 2018 Jan; 114():41-45. PubMed ID: 29146498 [TBL] [Abstract][Full Text] [Related]
34. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa. Ponnuvelu DV; Suriyaraj SP; Vijayaraghavan T; Selvakumar R; Pullithadathail B J Mater Sci Mater Med; 2015 Jul; 26(7):204. PubMed ID: 26152512 [TBL] [Abstract][Full Text] [Related]
35. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity. Wang H; Liu J; Wu X; Tong Z; Deng Z Nanotechnology; 2013 May; 24(20):205102. PubMed ID: 23609179 [TBL] [Abstract][Full Text] [Related]
36. Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties. Hamad AH; Li L; Liu Z; Zhong XL; Wang T Lasers Med Sci; 2016 Feb; 31(2):263-73. PubMed ID: 26714980 [TBL] [Abstract][Full Text] [Related]
37. Green synthesis and electrophoretic deposition of Ag nanoparticles on SiO₂/Si(100). Giallongo G; Rizzi GA; Weber V; Ennas G; Signorini R; Granozzi G Nanotechnology; 2013 Aug; 24(34):345501. PubMed ID: 23900002 [TBL] [Abstract][Full Text] [Related]
38. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition. Boies AM; Roberts JT; Girshick SL; Zhang B; Nakamura T; Mochizuki A Nanotechnology; 2009 Jul; 20(29):295604. PubMed ID: 19567950 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology. Gong JL; Jiang JH; Liang Y; Shen GL; Yu RQ J Colloid Interface Sci; 2006 Jun; 298(2):752-6. PubMed ID: 16457836 [TBL] [Abstract][Full Text] [Related]
40. Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. Song J; Kim H; Jang Y; Jang J ACS Appl Mater Interfaces; 2013 Nov; 5(22):11563-8. PubMed ID: 24156562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]