BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29220714)

  • 1. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.
    Šálek O; Matolín M; Gryc L
    J Environ Radioact; 2018 Feb; 182():101-107. PubMed ID: 29220714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upscaling ground-based backpack gamma-ray spectrometry to spatial resolution of UAV-based gamma-ray spectrometry for system validation.
    Altfelder S; Preugschat B; Matos M; Kandzia F; Wiens B; Eshmuradov O; Kunze C
    J Environ Radioact; 2024 Mar; 273():107382. PubMed ID: 38266319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.
    Youssef MA
    J Environ Radioact; 2016 Feb; 152():75-84. PubMed ID: 26650828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE USE OF DECONVOLUTION TECHNIQUE FOR THE ANALYSIS OF GAMMA SPECTROMETRY DATA FROM FIELD MONITORING USING UNMANNED AERIAL VEHICLES.
    Klusoň J; Thinová L
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):284-287. PubMed ID: 31808931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation surveillance using an unmanned aerial vehicle.
    Pöllänen R; Toivonen H; Peräjärvi K; Karhunen T; Ilander T; Lehtinen J; Rintala K; Katajainen T; Niemelä J; Juusela M
    Appl Radiat Isot; 2009 Feb; 67(2):340-4. PubMed ID: 19046635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing gamma-ray spectrometers for UAV-borne surveys with geophysical applications.
    van der Veeke S; Limburg J; Koomans RL; Söderström M; van der Graaf ER
    J Environ Radioact; 2021 Oct; 237():106717. PubMed ID: 34419768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of airborne gamma-ray spectrometry for environmental assessment of the rehabilitated nabarlek uranium mine, Australia.
    Martin P; Tims S; McGill A; Ryan B; Pfitzner K
    Environ Monit Assess; 2006 Apr; 115(1-3):531-54. PubMed ID: 16649135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of background gamma radiation levels using airborne gamma ray spectrometer data over uranium deposits, Cuddapah Basin, India - A comparative study of dose rates estimated by AGRS and PGRS.
    Srinivas D; Ramesh Babu V; Patra I; Tripathi S; Ramayya MS; Chaturvedi AK
    J Environ Radioact; 2017 Feb; 167():1-12. PubMed ID: 27914775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The airborne natural radioactivity in the uranium mine Rožná I.
    Otahal P; Burian I
    Radiat Prot Dosimetry; 2011 May; 145(2-3):150-4. PubMed ID: 21459877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of unmanned aerial systems for the mapping of legacy uranium mines.
    Martin PG; Payton OD; Fardoulis JS; Richards DA; Scott TB
    J Environ Radioact; 2015 May; 143():135-140. PubMed ID: 25771221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne gamma-ray spectra processing: Extracting photopeaks.
    Druker E
    J Environ Radioact; 2018 Jul; 187():22-31. PubMed ID: 29494936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.
    Smethurst MA; Watson RJ; Baranwal VC; Rudjord AL; Finne I
    J Environ Radioact; 2017 Jan; 166(Pt 2):321-340. PubMed ID: 27105766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne gamma-ray spectrometry data processing using 1.5D inversion.
    Druker E
    J Environ Radioact; 2017 Oct; 177():13-23. PubMed ID: 28570921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.
    Fathabadi N; Farahani MV; Amani S; Moradi M; Haddadi B
    Radiat Prot Dosimetry; 2011 Jun; 145(4):400-4. PubMed ID: 21148590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Analysis of Geiger-Müller and Cadmium Zinc Telluride Sensors Envisaging Airborne Radiological Monitoring in NORM Sites.
    Borbinha J; Romanets Y; Teles P; Corisco J; Vaz P; Carvalho D; Brouwer Y; Luís R; Pinto L; Vale A; Ventura R; Areias B; Reis AB; Gonçalves B
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of natural radioactivity concentrations and gamma dose rate levels in Kayseri, Turkey.
    Otansev P; Karahan G; Kam E; Barut I; Taskin H
    Radiat Prot Dosimetry; 2012 Jan; 148(2):227-36. PubMed ID: 21406430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of the radiometric map of the Czech Republic.
    Matolín M
    J Environ Radioact; 2017 Jan; 166(Pt 2):289-295. PubMed ID: 27133128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground follow-up of the airborne gamma-ray spectrometric survey data, ramlet HOMAYYER area, east abu-zeneima, southwestern Sinai, Egypt.
    Alkhateeb SA; Hossny AA; Ashami AS; Zaeimah MAM
    Appl Radiat Isot; 2019 Sep; 151():129-139. PubMed ID: 31177070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.
    Cresswell AJ; Sanderson DC
    Sci Total Environ; 2012 Oct; 437():285-96. PubMed ID: 22947616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Footprint and height corrections for UAV-borne gamma-ray spectrometry studies.
    van der Veeke S; Limburg J; Koomans RL; Söderström M; de Waal SN; van der Graaf ER
    J Environ Radioact; 2021 May; 231():106545. PubMed ID: 33601321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.