BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29220714)

  • 41. A method for determining Am-241 activity for large area contamination.
    Wilhelm E; Arbor N; Gutierrez S; Ménard S; Nourreddine AM
    Appl Radiat Isot; 2017 Jan; 119():86-93. PubMed ID: 27866124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Environmental gamma radiation measurement in district Swat, Pakistan.
    Jabbar T; Khan K; Subhani MS; Akhter P; Jabbar A
    Radiat Prot Dosimetry; 2008; 132(1):88-93. PubMed ID: 18936087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative analysis of gamma ray spectrometers applied to Irati Formation, Paraná basin, São Paulo State, Brazil.
    Roveratti G; Bonotto DM
    Appl Radiat Isot; 2022 Oct; 188():110399. PubMed ID: 35970115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Airborne gamma-ray mapping using fixed-wing vertical take-off and landing (VTOL) uncrewed aerial vehicles.
    Woodbridge E; Connor DT; Verbelen Y; Hine D; Richardson T; Scott TB
    Front Robot AI; 2023; 10():1137763. PubMed ID: 37448876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Action levels for airborne uranium in the workplace: chemical and radiological assessments.
    Leggett RW; Meck RA
    J Radiol Prot; 2018 Jun; 38(2):632-649. PubMed ID: 29424357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Geochemical and γ ray characterization of Pennsylvanian black shales: Implications for elevated home radon levels in Vanderburgh County, Indiana.
    Scheller KW; Elliott WS
    J Environ Radioact; 2015 Oct; 148():154-62. PubMed ID: 26171821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A simple method for determination of natural and depleted uranium in surface soil samples.
    Vukanac I; Novković D; Kandić A; Djurasević M; Milosević Z
    Appl Radiat Isot; 2010; 68(7-8):1433-4. PubMed ID: 20022756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.
    Albéri M; Baldoncini M; Bottardi C; Chiarelli E; Fiorentini G; Raptis KGC; Realini E; Reguzzoni M; Rossi L; Sampietro D; Strati V; Mantovani F
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28813023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of a radiation surveillance unit for an unmanned aerial vehicle.
    Kurvinen K; Smolander P; Pöllänen R; Kuukankorpi S; Kettunen M; Lyytinen J
    J Environ Radioact; 2005; 81(1):1-10. PubMed ID: 15748656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sedimentary and environmental conditions of Al-Rassafeh Badyieh (Area-2), Syria through aerial gamma ray spectrometry and multifractal techniques.
    Asfahani J
    Appl Radiat Isot; 2022 Dec; 190():110478. PubMed ID: 36257130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential of natural gamma-ray spectrometry for mapping and environmental monitoring of black-sand beach deposits on the northern coast of Sinai, Egypt.
    Aboelkhair H; Zaaeimah M
    Radiat Prot Dosimetry; 2013 Apr; 154(1):81-94. PubMed ID: 22869819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study of environmental radioactivity in Palestine by in situ gamma-ray spectroscopy.
    Lahham A; Al-Masri H; Judeh A
    Radiat Prot Dosimetry; 2009 Jul; 135(1):43-6. PubMed ID: 19470444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Suitable gamma energy for gamma-spectrometric determination of (238)U in surface soil samples of a high rainfall area in India.
    Lenka P; Jha SK; Gothankar S; Tripathi RM; Puranik VD
    J Environ Radioact; 2009 Jun; 100(6):509-14. PubMed ID: 19375833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.
    Beamish D
    J Environ Radioact; 2014 Dec; 138():249-63. PubMed ID: 25264940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Radioactivity concentrations in soil and dose assessment for Samsun city centre, Turkey.
    Tufan MÇ; Bostancı S
    Radiat Prot Dosimetry; 2012 Sep; 151(3):532-6. PubMed ID: 22456989
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comment on GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.
    Bogard J
    Health Phys; 2015 May; 108(5):557. PubMed ID: 25811154
    [No Abstract]   [Full Text] [Related]  

  • 57. Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey.
    Degerlier M; Karahan G; Ozger G
    J Environ Radioact; 2008 Jul; 99(7):1018-25. PubMed ID: 18272269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Response to Comment on GEANT4 calibration of gamma spectrometry efficiency for measurements of airborne radioactivity on filter paper.
    Alrefae T
    Health Phys; 2015 May; 108(5):557. PubMed ID: 25811155
    [No Abstract]   [Full Text] [Related]  

  • 59. Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping.
    Smethurst MA; Strand T; Sundal AV; Rudjord AL
    Sci Total Environ; 2008 Dec; 407(1):379-93. PubMed ID: 18962827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multifractal approach for delineating uranium anomalies related to phosphatic deposits in Area-3, Northern Palmyrides, Syria.
    Asfahani J
    Appl Radiat Isot; 2018 Jul; 137():225-235. PubMed ID: 29656230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.