These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29220726)

  • 1. Monte Carlo calculations of electrons impinging on a copper target: A comparison of EGSnrc, Geant4 and MCNP5.
    Archambault JP
    Appl Radiat Isot; 2018 Feb; 132():129-134. PubMed ID: 29220726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between EGSnrc, Geant4, MCNP5 and Penelope for mono-energetic electron beams.
    Archambault JP; Mainegra-Hing E
    Phys Med Biol; 2015 Jul; 60(13):4951-62. PubMed ID: 26060927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies.
    Faddegon BA; Asai M; Perl J; Ross C; Sempau J; Tinslay J; Salvat F
    Med Phys; 2008 Oct; 35(10):4308-17. PubMed ID: 18975676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fano cavity test for electron Monte Carlo transport algorithms in magnetic fields: comparison between EGSnrc, PENELOPE, MCNP6 and Geant4.
    Lee J; Lee J; Ryu D; Lee H; Ye SJ
    Phys Med Biol; 2018 Oct; 63(19):195013. PubMed ID: 30183683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O; Li XA
    Med Phys; 2002 May; 29(5):835-47. PubMed ID: 12033580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.
    Maigne L; Perrot Y; Schaart DR; Donnarieix D; Breton V
    Phys Med Biol; 2011 Feb; 56(3):811-27. PubMed ID: 21239846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes.
    Koivunoro H; Siiskonen T; Kotiluoto P; Auterinen I; Hippelainen E; Savolainen S
    Med Phys; 2012 Mar; 39(3):1335-44. PubMed ID: 22380366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the effects of microsphere and surrounding material composition on (90)Y dose kernels using egsnrc and mcnp5.
    Paxton AB; Davis SD; Dewerd LA
    Med Phys; 2012 Mar; 39(3):1424-34. PubMed ID: 22380375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron mass scattering powers: Monte Carlo and analytical calculations.
    Li XA; Rogers DW
    Med Phys; 1995 May; 22(5):531-41. PubMed ID: 7643788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A verification of the Monte Carlo code MCNP for thick target bremsstrahlung calculations.
    DeMarco JJ; Solberg TD; Wallace RE; Smathers JB
    Med Phys; 1995 Jan; 22(1):11-6. PubMed ID: 7715563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE.
    Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM
    Med Phys; 2009 Sep; 36(9):3964-70. PubMed ID: 19810469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical Note: Taking EGSnrc to new lows: Development of egs++ lattice geometry and testing with microscopic geometries.
    Martinov MP; Thomson RM
    Med Phys; 2020 Jul; 47(7):3225-3232. PubMed ID: 32277472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical note: improved implementation of Doppler broadening in MCNP5.
    Bartol LJ; DeWerd LA
    Med Phys; 2012 Sep; 39(9):5635-8. PubMed ID: 22957629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation transport calculations for 50 MV photon therapy beam using the Monte Carlo code GEANT4.
    Larsson S; Svensson R; Gudowska I; Ivanchenko V; Brahme A
    Radiat Prot Dosimetry; 2005; 115(1-4):503-7. PubMed ID: 16381775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.