BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29220735)

  • 1. Regulation of sulfur deprivation-induced expression of the ferredoxin-encoding FDX5 gene Chlamydomonas reinhardtii in aerobic conditions.
    Zalutskaya Z; Minaeva E; Filina V; Ostroukhova M; Ermilova E
    Plant Physiol Biochem; 2018 Feb; 123():18-23. PubMed ID: 29220735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic expression of the ferredoxin-encoding FDX5 gene of Chlamydomonas reinhardtii is regulated by the Crr1 transcription factor.
    Lambertz C; Hemschemeier A; Happe T
    Eukaryot Cell; 2010 Nov; 9(11):1747-54. PubMed ID: 20833896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferredoxin5 Deletion Affects Metabolism of Algae during the Different Phases of Sulfur Deprivation.
    Subramanian V; Wecker MSA; Gerritsen A; Boehm M; Xiong W; Wachter B; Dubini A; González-Ballester D; Antonio RV; Ghirardi ML
    Plant Physiol; 2019 Oct; 181(2):426-441. PubMed ID: 31350361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Truncated hemoglobin 1 is a new player in Chlamydomonas reinhardtii acclimation to sulfur deprivation.
    Minaeva E; Zalutskaya Z; Filina V; Ermilova E
    PLoS One; 2017; 12(10):e0186851. PubMed ID: 29049377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute quantification of selected photosynthetic electron transfer proteins in Chlamydomonas reinhardtii in the presence and absence of oxygen.
    Nikolova D; Heilmann C; Hawat S; Gäbelein P; Hippler M
    Photosynth Res; 2018 Aug; 137(2):281-293. PubMed ID: 29594952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii.
    Jacobs J; Pudollek S; Hemschemeier A; Happe T
    FEBS Lett; 2009 Jan; 583(2):325-9. PubMed ID: 19101555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of alternative oxidase 1 in Chlamydomonas reinhardtii during sulfur starvation.
    Zalutskaya Z; Filina V; Ostroukhova M; Ermilova E
    Eur J Protistol; 2018 Apr; 63():26-33. PubMed ID: 29407609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BLZ8 activates a plastidial peroxiredoxin and a ferredoxin to protect Chlamydomonas reinhardtii against oxidative stress.
    Choi BY; Park H; Kim J; Wang S; Lee J; Lee Y; Shim D
    Plant Biol (Stuttg); 2023 Oct; 25(6):915-923. PubMed ID: 37338124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple ferredoxin isoforms in Chlamydomonas reinhardtii - their role under stress conditions and biotechnological implications.
    Winkler M; Hemschemeier A; Jacobs J; Stripp S; Happe T
    Eur J Cell Biol; 2010 Dec; 89(12):998-1004. PubMed ID: 20696493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).
    Zhang L; Happe T; Melis A
    Planta; 2002 Feb; 214(4):552-61. PubMed ID: 11925039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of CRR1-targeted copper deficiency response in
    Wang S; Lv J; Zhang S
    Nanotoxicology; 2019 May; 13(4):447-454. PubMed ID: 30704326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell.
    Huang LF; Lin JY; Pan KY; Huang CK; Chu YK
    Int J Mol Sci; 2015 Aug; 16(8):19308-25. PubMed ID: 26287179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism.
    Yang W; Wittkopp TM; Li X; Warakanont J; Dubini A; Catalanotti C; Kim RG; Nowack EC; Mackinder LC; Aksoy M; Page MD; D'Adamo S; Saroussi S; Heinnickel M; Johnson X; Richaud P; Alric J; Boehm M; Jonikas MC; Benning C; Merchant SS; Posewitz MC; Grossman AR
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14978-83. PubMed ID: 26627249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses.
    Moseley JL; Gonzalez-Ballester D; Pootakham W; Bailey S; Grossman AR
    Genetics; 2009 Mar; 181(3):889-905. PubMed ID: 19087952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tiered regulation of sulfur deprivation responses in Chlamydomonas reinhardtii and identification of an associated regulatory factor.
    Aksoy M; Pootakham W; Pollock SV; Moseley JL; González-Ballester D; Grossman AR
    Plant Physiol; 2013 May; 162(1):195-211. PubMed ID: 23482872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoautotrophic cultures of Chlamydomonas reinhardtii: sulfur deficiency, anoxia, and hydrogen production.
    Grechanik V; Romanova A; Naydov I; Tsygankov A
    Photosynth Res; 2020 Mar; 143(3):275-286. PubMed ID: 31897856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sulfur acclimation SAC3 kinase is required for chloroplast transcriptional repression under sulfur limitation in Chlamydomonas reinhardtii.
    Irihimovitch V; Stern DB
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7911-6. PubMed ID: 16672369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into AOX2 transcriptional regulation in Chlamydomonas reinhardtii.
    Ostroukhova M; Zalutskaya Z; Ermilova E
    Eur J Protistol; 2017 Apr; 58():1-8. PubMed ID: 28088729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii.
    Philipps G; Happe T; Hemschemeier A
    Planta; 2012 Apr; 235(4):729-45. PubMed ID: 22020754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii.
    Shu L; Hu Z
    BMC Genomics; 2012 Mar; 13():108. PubMed ID: 22439676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.