BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29220811)

  • 1. Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae.
    Kang DH; You SK; Joo YC; Shin SK; Hyeon JE; Han SO
    Bioresour Technol; 2018 Feb; 250():666-672. PubMed ID: 29220811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar.
    Alkotaini B; Han NS; Kim BS
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1573-1580. PubMed ID: 27888333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient enzymatic degradation process for hydrolysis activity of the Carrageenan from red algae in marine biomass.
    Kang DH; Hyeon JE; You SK; Kim SW; Han SO
    J Biotechnol; 2014 Dec; 192 Pt A():108-13. PubMed ID: 25281802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass.
    Kim HT; Yun EJ; Wang D; Chung JH; Choi IG; Kim KH
    Bioresour Technol; 2013 May; 136():582-7. PubMed ID: 23567734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass.
    Pathiraja D; Lee S; Choi IG
    J Agric Food Chem; 2018 Jul; 66(26):6814-6821. PubMed ID: 29896965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars.
    Yun EJ; Yu S; Kim KH
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5581-5589. PubMed ID: 28656380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of agar and agarase in industrial applications of sustainable marine biomass.
    Park SH; Lee CR; Hong SK
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):2815-2832. PubMed ID: 32036436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical Characteristics and Substrate Degradation Pattern of a Novel Exo-Type β-Agarase from the Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. Strain MY04.
    Han W; Cheng Y; Wang D; Wang S; Liu H; Gu J; Wu Z; Li F
    Appl Environ Microbiol; 2016 Aug; 82(16):4944-54. PubMed ID: 27260364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Bacterial Expansin on Agarolytic Complexes to Enhance the Degrading Activity of Red Algae by Control of Gelling Properties.
    Jeong DW; Hyeon JE; Joo YC; Shin SK; Han SO
    Mar Biotechnol (NY); 2018 Feb; 20(1):1-9. PubMed ID: 29151139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products.
    Jiang C; Liu Z; Cheng D; Mao X
    Biotechnol Adv; 2020 Dec; 45():107641. PubMed ID: 33035614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa.
    Leema Roseline T; Sachindra NM
    Appl Biochem Biotechnol; 2018 Sep; 186(1):66-84. PubMed ID: 29504075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical Optimization of Culture Variables for Enhancing Agarase Production by Dendryphiella arenaria Utilizing Palisada perforata (Rhodophyta) and Enzymatic Saccharification of the Macroalgal Biomass.
    Gomaa M; Hifney AF; Fawzy MA; Abdel-Gawad KM
    Mar Biotechnol (NY); 2017 Dec; 19(6):592-600. PubMed ID: 29080933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. beta-agarases I and II from Pseudomonas atlantica. Purifications and some properties.
    Morrice LM; McLean MW; Williamson FB; Long WF
    Eur J Biochem; 1983 Oct; 135(3):553-8. PubMed ID: 6617649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coimmobilization of β-Agarase and α-Neoagarobiose Hydrolase for Enhancing the Production of 3,6-Anhydro-l-galactose.
    Wang Q; Sun J; Liu Z; Huang W; Xue C; Mao X
    J Agric Food Chem; 2018 Jul; 66(27):7087-7095. PubMed ID: 29893561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agarase cocktail from agar polysaccharide utilization loci converts homogenized Gelidium amansii into neoagarooligosaccharides.
    Song T; Wang X; Wu M; Zhao K; Wang X; Chu Y; Lin J
    Food Chem; 2021 Aug; 352():128685. PubMed ID: 33691998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-agarases I and II from Pseudomonas atlantica. Substrate specificities.
    Morrice LM; McLean MW; Long WF; Williamson FB
    Eur J Biochem; 1983 Dec; 137(1-2):149-54. PubMed ID: 6653550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of neoagarobiose from agar through a dual-enzyme and two-stage hydrolysis strategy.
    Yan J; Chen P; Zeng Y; Yang J; Men Y; Zhu Y; Sun Y
    Int J Biol Macromol; 2020 Oct; 160():288-295. PubMed ID: 32470583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities.
    Liu G; Wu S; Jin W; Sun C
    Sci Rep; 2016 Jan; 6():18726. PubMed ID: 26725302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides.
    Kim JH; Yun EJ; Yu S; Kim KH; Kang NJ
    Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 29053566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of BpGH16A of Bacteroides plebeius, a key enzyme initiating the depolymerization of agarose in the human gut.
    Park NJ; Yu S; Kim DH; Yun EJ; Kim KH
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):617-625. PubMed ID: 33404831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.