These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29221015)

  • 1. Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram.
    Ko SB; Park JH
    Opt Express; 2017 Nov; 25(24):29788-29797. PubMed ID: 29221015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hologram conversion for speckle free reconstruction using light field extraction and deep learning.
    Park DY; Park JH
    Opt Express; 2020 Feb; 28(4):5393-5409. PubMed ID: 32121761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient texture mapping by adaptive mesh division in mesh-based computer generated hologram.
    Ji YM; Yeom H; Park JH
    Opt Express; 2016 Nov; 24(24):28154-28169. PubMed ID: 27906380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique.
    Takaki Y; Yokouchi M
    Opt Express; 2011 Apr; 19(8):7567-79. PubMed ID: 21503065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speckle-suppression in hologram calculation using ray-sampling plane.
    Utsugi T; Yamaguchi M
    Opt Express; 2014 Jul; 22(14):17193-206. PubMed ID: 25090533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle reduction for single sideband-encoded computer-generated holograms by using an optimized carrier wave.
    Min K; Min D; Hong J; Park JH
    Opt Express; 2024 Apr; 32(8):13508-13526. PubMed ID: 38859319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators.
    Wang D; Li NN; Liu C; Wang QH
    Opt Express; 2019 Apr; 27(8):11617-11625. PubMed ID: 31053004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram.
    Askari M; Kim SB; Shin KS; Ko SB; Kim SH; Park DY; Ju YG; Park JH
    Opt Express; 2017 Oct; 25(21):25867-25878. PubMed ID: 29041249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-color holographic display with increased-viewing-angle [Invited].
    Zeng Z; Zheng H; Yu Y; Asundi AK; Valyukh S
    Appl Opt; 2017 May; 56(13):F112-F120. PubMed ID: 28463303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative study on a resampling mask method for speckle reduction with amplitude superposition.
    Zhang W; Cao L; Zhang H; Zhang H; Han C; Jin G; Sheng Y
    Appl Opt; 2017 May; 56(13):F205-F212. PubMed ID: 28463246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speckle elimination using shift-averaging in high-rate holographic projection.
    Golan L; Shoham S
    Opt Express; 2009 Feb; 17(3):1330-9. PubMed ID: 19188961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of two-photon holographic speckle using shift-averaging.
    Matar S; Golan L; Shoham S
    Opt Express; 2011 Dec; 19(27):25891-9. PubMed ID: 22274177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foveated computer-generated hologram and its progressive update using triangular mesh scene model for near-eye displays.
    Ju YG; Park JH
    Opt Express; 2019 Aug; 27(17):23725-23738. PubMed ID: 31510273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encoding multiple holograms for speckle-noise reduction in optical display.
    Memmolo P; Bianco V; Paturzo M; Javidi B; Netti PA; Ferraro P
    Opt Express; 2014 Oct; 22(21):25768-75. PubMed ID: 25401610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-hogel-based computer generated hologram from light field using complex field recovery technique from Wigner distribution function.
    Park JH; Askari M
    Opt Express; 2019 Feb; 27(3):2562-2574. PubMed ID: 30732292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms.
    Yang F; Kaczorowski A; Wilkinson TD
    Appl Opt; 2014 Dec; 53(35):8261-7. PubMed ID: 25608068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common-path angular-multiplexing holographic data storage based on computer-generated holography.
    Yoneda N; Nobukawa T; Morimoto T; Saita Y; Nomura T
    Opt Lett; 2021 Jun; 46(12):2920-2923. PubMed ID: 34129574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle reduction by combination of digital filter and optical suppression in a modified Gerchberg-Saxton algorithm computer-generated hologram.
    Chen CY; Deng QL; Wu PJ; Lin BS; Chang HT; Hwang HE; Huang GS
    Appl Opt; 2014 Sep; 53(27):G163-8. PubMed ID: 25322125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Available number of multiplexed holograms based on signal-to-noise ratio analysis in reflection-type holographic memory using three-dimensional speckle-shift multiplexing.
    Nishizaki T; Matoba O; Nitta K
    Appl Opt; 2014 Sep; 53(25):5733-9. PubMed ID: 25321370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing.
    Lee B; Yoo D; Jeong J; Lee S; Lee D; Lee B
    Opt Lett; 2020 Apr; 45(8):2148-2151. PubMed ID: 32287178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.