These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29221078)

  • 1. Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array.
    Kwon KC; Erdenebat MU; Lim YT; Joo KI; Park MK; Park H; Jeong JR; Kim HR; Kim N
    Opt Express; 2017 Nov; 25(24):30503-30512. PubMed ID: 29221078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array.
    Kwon KC; Lim YT; Shin CW; Erdenebat MU; Hwang JM; Kim N
    Opt Lett; 2017 Aug; 42(16):3209-3212. PubMed ID: 28809910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a micro-lens array for improving depth-of-field of integral imaging 3D display.
    Peng Y; Zhou X; Zhang Y; Guo T
    Appl Opt; 2020 Oct; 59(29):9104-9107. PubMed ID: 33104619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths.
    Park CK; Lee SS; Hwang YS
    Opt Express; 2009 Oct; 17(21):19047-54. PubMed ID: 20372640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution-enhanced integral imaging using two micro-lens arrays with different focal lengths for capturing and display.
    Wang Z; Wang A; Wang S; Ma X; Ming H
    Opt Express; 2015 Nov; 23(22):28970-7. PubMed ID: 26561165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integral imaging microscopy with enhanced depth-of-field using a spatial multiplexing.
    Kwon KC; Erdenebat MU; Alam MA; Lim YT; Kim KG; Kim N
    Opt Express; 2016 Feb; 24(3):2072-83. PubMed ID: 26906782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on polarization lens formed by asymmetrical metallic hole array.
    Yin S; Dong X; Wei X; Deng Q; Shi L; Pan Y; Du C
    Appl Opt; 2011 Nov; 50(31):G118-22. PubMed ID: 22086035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-switching laterally virtual-moving microlens array for enhancing spatial resolution in light-field imaging system without degradation of angular sampling resolution.
    Park MK; Park H; Joo KI; Lee TH; Kwon KC; Erdenebat MU; Lim YT; Kim N; Kim HR
    Sci Rep; 2019 Aug; 9(1):11297. PubMed ID: 31383912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-voltage driving high-resistance liquid crystal micro-lens with electrically tunable depth of field for the light field imaging system.
    Wang W; Chen W; Peng Y; Zhang Y; Yan Q; Guo T; Zhou X; Wu C
    Sci Rep; 2022 Oct; 12(1):17442. PubMed ID: 36261665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vari-Focal Light Field Camera for Extended Depth of Field.
    Kim HM; Kim MS; Chang S; Jeong J; Jeon HG; Song YM
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-dependent liquid crystalline polymeric lens array with aberration-improved aspherical curvature for low 3D crosstalk in 2D/3D switchable mobile multi-view display.
    Park MK; Park H; Joo KI; Lee TH; Kim HR
    Opt Express; 2018 Aug; 26(16):20281-20297. PubMed ID: 30119340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-of-view enhanced integral imaging with dual prism arrays based on perspective-dependent pixel mapping.
    Choi HM; Hwang YS; Kim ES
    Opt Express; 2022 Mar; 30(7):11046-11065. PubMed ID: 35473057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a digitally switchable multifocal microlens array for integral imaging systems.
    Wang X; Hua H
    Opt Express; 2021 Oct; 29(21):33771-33784. PubMed ID: 34809182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display.
    Liu M; Lu C; Li H; Liu X
    Opt Express; 2018 Feb; 26(4):4060-4074. PubMed ID: 29475261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically isotropic switchable microlens arrays based on liquid crystal.
    Lee YJ; Yu CJ; Lee JH; Baek JH; Kim Y; Kim JH
    Appl Opt; 2014 Jun; 53(17):3633-6. PubMed ID: 24921125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical controlling of the focal intensity of a liquid crystal polymer microlens array.
    Huang SY; Tung TC; Jau HC; Liu JH; Fuh AY
    Appl Opt; 2011 Oct; 50(30):5883-8. PubMed ID: 22015416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality.
    Shin D; Kim C; Koo G; Hyub Won Y
    Opt Express; 2020 Feb; 28(4):5602-5616. PubMed ID: 32121777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband point-spread function engineering via a freeform diffractive microlens array.
    Majumder A; Meem M; Stewart R; Menon R
    Opt Express; 2022 Jan; 30(2):1967-1975. PubMed ID: 35209347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.