BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29221084)

  • 21. Optical free-space wavelength-division-multiplexing transport system.
    Lin CY; Lin YP; Lu HH; Chen CY; Jhang TW; Chen MC
    Opt Lett; 2014 Jan; 39(2):315-8. PubMed ID: 24562135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective interference mitigation scheme for multi-LED-based mobile optical camera communication.
    Yang Y; He J; Zhou B
    Appl Opt; 2021 Dec; 60(35):10928-10934. PubMed ID: 35200855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-distance indoor optical camera communication using side-emitting fibers as distributed transmitters.
    Eöllős-Jarošíková K; Neuman V; Jurado-Verdú CM; Teli SR; Zvánovec S; Komanec M
    Opt Express; 2023 Jul; 31(16):26980-26989. PubMed ID: 37710546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera.
    Shi J; He J; He J; Deng R; Wei Y; Long F; Cheng Y; Chen L
    Opt Express; 2017 Jul; 25(14):15905-15912. PubMed ID: 28789101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Color-filter-free spatial visible light communication using RGB-LED and mobile-phone camera.
    Chen SH; Chow CW
    Opt Express; 2014 Dec; 22(25):30713-8. PubMed ID: 25607019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization.
    Wang Y; Huang X; Tao L; Shi J; Chi N
    Opt Express; 2015 May; 23(10):13626-33. PubMed ID: 26074612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m).
    Cossu G; Ali W; Corsini R; Ciaramella E
    Opt Express; 2015 Jun; 23(12):15700-5. PubMed ID: 26193548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linear optical sampling technique for simultaneously characterizing WDM signals with a single receiving channel.
    Wang S; Xu B; Fan X; He Z
    Opt Express; 2018 Jan; 26(2):2089-2098. PubMed ID: 29401933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Characterization of RGB LED Transceiver in Low-Complexity LED-to-LED Link.
    Galal M; Ng WP; Binns R; Abd El Aziz A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream.
    Feng Z; Xu L; Wu Q; Tang M; Fu S; Tong W; Shum PP; Liu D
    Opt Express; 2017 Mar; 25(6):5951-5961. PubMed ID: 28381065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tricolor R/G/B Laser Diode Based Eye-Safe White Lighting Communication Beyond 8 Gbit/s.
    Wu TC; Chi YC; Wang HY; Tsai CT; Huang YF; Lin GR
    Sci Rep; 2017 Jan; 7(1):11. PubMed ID: 28127060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AMCC nonlinear baseband superimposition and extraction aided by proposed interference cancellation for WDM-PON used in 5G mobile fronthaul.
    Guo H; Yang C; Gao Y; Li H
    Opt Express; 2022 Aug; 30(18):31602-31613. PubMed ID: 36242239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. WDM transmission of 108.4-Gbaud PDM-QPSK signals (40 × 433.6-Gb/s) over 2800-km SMF-28 with EDFA-only.
    Li X; Yu J; Dong Z; Chien HC; Jia Z; Chi N
    Opt Express; 2012 Dec; 20(26):B217-22. PubMed ID: 23262854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF.
    Tian Y; Li J; Wu Z; Chen Y; Zhu P; Tang R; Mo Q; He Y; Chen Z
    Opt Express; 2017 Jul; 25(14):16603-16617. PubMed ID: 28789162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Implementation of a Hybrid Optical Camera Communication System for Indoor Applications.
    Nguyen H; Le NT; Le DTA; Jang YM
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mobile-phone based visible light communication using region-grow light source tracking for unstable light source.
    Liang K; Chow CW; Liu Y
    Opt Express; 2016 Jul; 24(15):17505-10. PubMed ID: 27464196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication.
    Chow CW; Shiu RJ; Liu YC; Liao XL; Lin KH; Wang YC; Chen YY
    Opt Express; 2018 May; 26(10):12530-12535. PubMed ID: 29801291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators.
    Lu HH; Lin YP; Wu PY; Chen CY; Chen MC; Jhang TW
    Opt Express; 2014 Feb; 22(3):3468-74. PubMed ID: 24663637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.
    Li J; Huang Z; Liu X; Ji Y
    Opt Express; 2015 Jan; 23(1):611-9. PubMed ID: 25835706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications.
    Bai J; Li Y; Yi Y; Cheng W; Du H
    Opt Express; 2017 Oct; 25(20):24630-24638. PubMed ID: 29041408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.