These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29221099)

  • 1. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics.
    Liu Z; Pang Y; Pan C; Huang Z
    Opt Express; 2017 Nov; 25(24):30720-30731. PubMed ID: 29221099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
    Cheng D; Wang Y; Xu C; Song W; Jin G
    Opt Express; 2014 Aug; 22(17):20705-19. PubMed ID: 25321274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator.
    Gu L; Cheng D; Wang Q; Hou Q; Wang S; Yang T; Wang Y
    Opt Express; 2019 Apr; 27(9):12692-12709. PubMed ID: 31052807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a compact waveguide eyeglass with high efficiency by joining freeform surfaces and volume holographic gratings.
    Shi X; Liu J; Xiao J; Han J
    J Opt Soc Am A Opt Image Sci Vis; 2021 Feb; 38(2):A19-A26. PubMed ID: 33690524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization.
    Ni D; Cheng D; Liu Y; Wang X; Yao C; Yang T; Chi C; Wang Y
    Opt Express; 2022 Jul; 30(14):24523-24543. PubMed ID: 36237005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms.
    Han J; Liu J; Yao X; Wang Y
    Opt Express; 2015 Feb; 23(3):3534-49. PubMed ID: 25836207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide.
    Wang Q; Cheng D; Hou Q; Gu L; Wang Y
    Opt Express; 2020 Nov; 28(23):35376-35394. PubMed ID: 33182985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid waveguide based augmented reality display system with extra large field of view and 2D exit pupil expansion.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2023 Sep; 31(20):32799-32812. PubMed ID: 37859074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism.
    Cheng D; Wang Y; Hua H; Talha MM
    Appl Opt; 2009 May; 48(14):2655-68. PubMed ID: 19424386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display.
    Pan C; Liu Z; Pang Y; Zheng X; Cai H; Zhang Y; Huang Z
    Opt Express; 2018 Oct; 26(20):26646-26662. PubMed ID: 30469747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of two compact waveguide display systems utilizing metasurface gratings as couplers.
    Afra T; Salehi MR; Abiri E
    Appl Opt; 2021 Oct; 60(28):8756-8765. PubMed ID: 34613101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable pupil expansion propagation using orthogonal superposition varied-line-spacing H-PDLC gratings in a holographic waveguide system.
    Shen T; Cai Z; Liu Y; Zheng J
    Appl Opt; 2019 Aug; 58(24):6622-6628. PubMed ID: 31503594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact pupil-expansion AR-HUD based on surface-relief grating.
    Dai G; Yang H; Yin L; Ren K; Liu J; Zhang X; Zhang J
    Opt Express; 2024 Feb; 32(5):6917-6928. PubMed ID: 38439386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holographic waveguide HUD with in-line pupil expansion and 2D FOV expansion.
    Bigler CM; Mann MS; Blanche PA
    Appl Opt; 2019 Dec; 58(34):G326-G331. PubMed ID: 31873517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating.
    Weng Y; Zhang Y; Wang W; Gu Y; Wang C; Wei R; Zhang L; Wang B
    Opt Express; 2023 Feb; 31(4):6601-6614. PubMed ID: 36823912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented reality display with high eyebox uniformity over the full field of view based on a random mask grating.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2024 May; 32(10):17409-17423. PubMed ID: 38858925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic waveguide display with a combined-grating in-coupler.
    Guo J; Tu Y; Yang L; Wang L; Wang B
    Appl Opt; 2016 Nov; 55(32):9293-9298. PubMed ID: 27857325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide.
    Cheng D; Wang Q; Wei L; Wang X; Zhou L; Hou Q; Duan J; Yang T; Wang Y
    Appl Opt; 2022 Jul; 61(19):5813-5822. PubMed ID: 36255817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-relief and polarization gratings for solar concentrators.
    de Jong TM; de Boer DK; Bastiaansen CW
    Opt Express; 2011 Aug; 19(16):15127-42. PubMed ID: 21934874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box.
    Duan X; Liu J; Shi X; Zhang Z; Xiao J
    Opt Express; 2020 Oct; 28(21):31316-31329. PubMed ID: 33115107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.