These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29221104)

  • 1. Accurate measurements of circular and residual linear birefringences of spun fibers using binary polarization rotators.
    Xu Z; Yao XS; Ding Z; Chen XJ; Zhao X; Xiao H; Feng T; Liu T
    Opt Express; 2017 Nov; 25(24):30780-30792. PubMed ID: 29221104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed measurements of external force induced local birefringence in spun highly birefringent optical fibers using polarimetric OFDR.
    Ding Z; Wang C; Liu K; Liu Y; Xu G; Jiang J; Guo Y; Liu T
    Opt Express; 2019 Jan; 27(2):951-964. PubMed ID: 30696173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction and measurement of the effective Verdet constant of spun optical fibers.
    Yao P; Chen X; Hao P; Xiao H; Ding Z; Liu T; Steve Yao X
    Opt Express; 2021 Jul; 29(15):23315-23330. PubMed ID: 34614599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed polarization analysis with binary polarization rotators for the accurate measurement of distance-resolved birefringence along a single-mode fiber.
    Feng T; Shang Y; Wang X; Wu S; Khomenko A; Chen X; Yao XS
    Opt Express; 2018 Oct; 26(20):25989-26002. PubMed ID: 30469692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative error's quadratic dependence on the electric current and the methods for its compensation in fiber optic current sensor systems.
    Yao P; Yao XS; Chen X; Xiao H; Li J
    Opt Express; 2022 Dec; 30(25):45471-45487. PubMed ID: 36522952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of birefringence and ellipticity of polarization eigenmodes in spun highly birefringent fibers using spectral interferometry and lateral point-force method.
    Kowal D; Statkiewicz-Barabach G; Napiorkowski M; Makara M; Poturaj K; Mergo P; Urbanczyk W
    Opt Express; 2018 Dec; 26(26):34185-34199. PubMed ID: 30650846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate method for measuring the thermal coefficient of group birefringence of polarization-maintaining fibers.
    Ding Z; Meng Z; Yao XS; Chen X; Liu T; Qin M
    Opt Lett; 2011 Jun; 36(11):2173-5. PubMed ID: 21633486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separating the Siamese twins: using a π-shifted Sagnac interferometer to control the relative weight/influence of circular and linear birefringence on the loop transmission facilitating their measurement.
    Want-Gauthier E; Golub I
    Opt Lett; 2017 Mar; 42(5):943-946. PubMed ID: 28248337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of residual stress on polarization mode dispersion of fibers made with different types of spinning.
    Li MJ; Chen X; Nolan DA
    Opt Lett; 2004 Mar; 29(5):448-50. PubMed ID: 15005188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber.
    Müller GM; Gu X; Yang L; Frank A; Bohnert K
    Opt Express; 2016 May; 24(10):11164-73. PubMed ID: 27409938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrooptic voltage sensor: birefringence effects and compensation methods.
    Lee KS
    Appl Opt; 1990 Oct; 29(30):4453-61. PubMed ID: 20577409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.
    Royes J; Provenzano C; Pagliusi P; Tejedor RM; Piñol M; Oriol L
    Macromol Rapid Commun; 2014 Nov; 35(21):1890-5. PubMed ID: 25257542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence.
    Chu WS; Kim SM; Oh MC
    Opt Express; 2015 Aug; 23(17):22816-25. PubMed ID: 26368249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarimetric Sensitivity to Torsion in Spun Highly Birefringent Fibers.
    Kowal D; Statkiewicz-Barabach G; Bernas M; Napiorkowski M; Makara M; Czyzewska L; Mergo P; Urbanczyk W
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Birefringence and polarization mode-dispersion in spun single-mode fibers.
    Barlow AJ; Ramskov-Hansen JJ; Payne DN
    Appl Opt; 1981 Sep; 20(17):2962-8. PubMed ID: 20333081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.
    Provenzano C; Pagliusi P; Cipparrone G; Royes J; Piñol M; Oriol L
    J Phys Chem B; 2014 Oct; 118(40):11849-54. PubMed ID: 25187982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed and polarimetric pressure sensitivity in spun highly birefringent optical fibers.
    Bernaś M; Chmielowski P; Garbacka M; Mergo P; Statkiewicz-Barabach G
    Opt Express; 2023 Oct; 31(21):34600-34608. PubMed ID: 37859212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of high-birefringent spun fiber parameters using short-length fiber Bragg gratings.
    Vasiliev SA; Przhiyalkovsky YV; Gnusin PI; Medvedkov OI; Dianov EM
    Opt Express; 2016 May; 24(11):11290-8. PubMed ID: 27410060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence.
    Cipparrone G; Pagliusi P; Provenzano C; Shibaev VP
    J Phys Chem B; 2010 Jul; 114(27):8900-4. PubMed ID: 20568800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stray current sensor with cylindrical twisted fiber.
    Xu S; Li W; Wang Y; Xing F
    Appl Opt; 2014 Aug; 53(24):5486-92. PubMed ID: 25321123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.