These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29221388)

  • 41. Potential energy surface for activation of methane by Pt(+): a combined guided ion beam and DFT study.
    Zhang XG; Liyanage R; Armentrout PB
    J Am Chem Soc; 2001 Jun; 123(23):5563-75. PubMed ID: 11389640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactions of Th(+) + H2, D2, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations.
    Cox RM; Armentrout PB; de Jong WA
    J Phys Chem B; 2016 Mar; 120(8):1601-14. PubMed ID: 26414691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Level ab Initio Predictions for the Ionization Energies, Bond Dissociation Energies, and Heats of Formation of Titanium Oxides and Their Cations (TiO
    Pan Y; Luo Z; Chang YC; Lau KC; Ng CY
    J Phys Chem A; 2017 Jan; 121(3):669-679. PubMed ID: 28075604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Praseodymium cation (Pr
    Ghiassee M; Ewigleben J; Armentrout PB
    J Chem Phys; 2020 Oct; 153(14):144304. PubMed ID: 33086820
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermochemistry of the activation of N2 on iron cluster cations: Guided ion beam studies of the reactions of Fe(n)+ (n = 1-19) with N2.
    Tan L; Liu F; Armentrout PB
    J Chem Phys; 2006 Feb; 124(8):084302. PubMed ID: 16512711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energetics and mechanisms of C-H bond activation by a doubly charged metal ion: guided ion beam and theoretical studies of Ta2+ + CH4.
    Parke LG; Hinton CS; Armentrout PB
    J Phys Chem A; 2008 Oct; 112(42):10469-80. PubMed ID: 18826293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequential Bond Dissociation Energies of Th
    Kafle A; Armentrout PB
    Inorg Chem; 2022 Oct; 61(40):15936-15952. PubMed ID: 36166214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Guided ion beam and theoretical studies of the reaction of Ag(+) with CS(2): Gas-phase thermochemistry of AgS(+) and AgCS(+) and insight into spin-forbidden reactions.
    Armentrout PB; Kretzschmar I
    J Chem Phys; 2010 Jan; 132(2):024306. PubMed ID: 20095673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Guided ion beam studies of the reactions of Co n+ (n=1-18) with N2: Cobalt cluster mononitride and dinitride bond energies.
    Liu F; Li M; Tan L; Armentrout PB
    J Chem Phys; 2008 May; 128(19):194313. PubMed ID: 18500871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toward reliable modeling of S-nitrosothiol chemistry: Structure and properties of methyl thionitrite (CH
    Khomyakov DG; Timerghazin QK
    J Chem Phys; 2017 Jul; 147(4):044305. PubMed ID: 28764371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Guided ion beam and theoretical study of the reactions of Ir+ with H2, D2, and HD.
    Li FX; Zhang XG; Armentrout PB
    J Phys Chem B; 2005 May; 109(17):8350-7. PubMed ID: 16851979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental and theoretical studies of the reaction of Rh+ with CS2 in the gas phase: thermochemistry of RhS+ and RhCS+.
    Armentrout PB; Kretzschmar I
    J Phys Chem A; 2009 Oct; 113(41):10955-65. PubMed ID: 19764705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of Water by Thorium Cation: A Guided Ion Beam and Quantum Chemical Study.
    Cox RM; Armentrout PB
    J Am Soc Mass Spectrom; 2019 Oct; 30(10):1835-1849. PubMed ID: 31016605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Threshold collision-induced dissociation of diatomic molecules: a case study of the energetics and dynamics of O2- collisions with Ar and Xe.
    Ahu Akin F; Ree J; Ervin KM; Kyu Shin H
    J Chem Phys; 2005 Aug; 123(6):64308. PubMed ID: 16122309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).
    Lau KC; Chang YC; Shi X; Ng CY
    J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Singlet O
    Benny J; Saito T; Moe MM; Liu J
    J Phys Chem A; 2022 Jan; 126(1):68-79. PubMed ID: 34941276
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Guided ion-beam studies of the kinetic-energy-dependent reactions of Co(n)+ (n = 2-16) with D2: cobalt cluster-deuteride bond energies.
    Liu F; Armentrout PB
    J Chem Phys; 2005 May; 122(19):194320. PubMed ID: 16161586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+).
    Lau KC; Chang YC; Lam CS; Ng CY
    J Phys Chem A; 2009 Dec; 113(52):14321-8. PubMed ID: 19775110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrogen atom transfer reactions of C2-, C4-, and C6-: bond dissociation energies of linear H-C2n- and H-C2n (n = 1, 2, 3).
    Shi Y; Ervin KM
    J Phys Chem A; 2008 Feb; 112(6):1261-7. PubMed ID: 18211042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissociation of ground and nsigma* states of CF3Cl using multireference configuration interaction with singles and doubles and with multireference average quadratic coupled cluster extensivity corrections.
    Lucena JR; Ventura E; do Monte SA; Araújo RC; Ramos MN; Fausto R
    J Chem Phys; 2007 Oct; 127(16):164320. PubMed ID: 17979351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.