These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 29221405)

  • 1. On the non-stationary generalized Langevin equation.
    Meyer H; Voigtmann T; Schilling T
    J Chem Phys; 2017 Dec; 147(21):214110. PubMed ID: 29221405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Langevin dynamics simulation with non-stationary memory kernels: How to make noise.
    Widder C; Koch F; Schilling T
    J Chem Phys; 2022 Nov; 157(19):194107. PubMed ID: 36414449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation of the nonequilibrium generalized Langevin equation from a time-dependent many-body Hamiltonian.
    Netz RR
    Phys Rev E; 2024 Jul; 110(1-1):014123. PubMed ID: 39160956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comments on the validity of the non-stationary generalized Langevin equation as a coarse-grained evolution equation for microscopic stochastic dynamics.
    Glatzel F; Schilling T
    J Chem Phys; 2021 May; 154(17):174107. PubMed ID: 34241070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of the generalized Langevin equation in nonstationary environments.
    Kawai S; Komatsuzaki T
    J Chem Phys; 2011 Mar; 134(11):114523. PubMed ID: 21428648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium.
    Izvekov S
    Phys Rev E; 2021 Aug; 104(2-1):024121. PubMed ID: 34525637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics.
    Izvekov S
    J Chem Phys; 2019 Sep; 151(10):104109. PubMed ID: 31521077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient aging in fractional Brownian and Langevin-equation motion.
    Kursawe J; Schulz J; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Markovian effects of conformational fluctuations on the global diffusivity in Langevin equation with fluctuating diffusivity.
    Kimura M; Akimoto T
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37548303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic reaction coordinate in thermally fluctuating environment in the framework of the multidimensional generalized Langevin equations.
    Kawai S; Komatsuzaki T
    Phys Chem Chem Phys; 2010 Dec; 12(47):15382-91. PubMed ID: 20963208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit.
    Izvekov S
    Phys Rev E; 2017 Jan; 95(1-1):013303. PubMed ID: 28208451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glassy dynamics of Brownian particles with velocity-dependent friction.
    Yazdi A; Sperl M
    Phys Rev E; 2016 Sep; 94(3-1):032602. PubMed ID: 27739784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel.
    Baczewski AD; Bond SD
    J Chem Phys; 2013 Jul; 139(4):044107. PubMed ID: 23901960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the dynamics of reaction coordinates in classical, time-dependent, many-body processes.
    Meyer H; Voigtmann T; Schilling T
    J Chem Phys; 2019 May; 150(17):174118. PubMed ID: 31067913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic derivation of particle-based coarse-grained dynamics.
    Izvekov S
    J Chem Phys; 2013 Apr; 138(13):134106. PubMed ID: 23574207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-correlation corrected friction in generalized Langevin models: Application to the continuous Asakura-Oosawa model.
    Klippenstein V; van der Vegt NFA
    J Chem Phys; 2022 Jul; 157(4):044103. PubMed ID: 35922348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function.
    Izvekov S
    J Chem Phys; 2017 Mar; 146(12):124109. PubMed ID: 28388110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized elastic model yields a fractional Langevin equation description.
    Taloni A; Chechkin A; Klafter J
    Phys Rev Lett; 2010 Apr; 104(16):160602. PubMed ID: 20482037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of a power-law memory kernel for fluctuations within a single protein molecule.
    Min W; Luo G; Cherayil BJ; Kou SC; Xie XS
    Phys Rev Lett; 2005 May; 94(19):198302. PubMed ID: 16090221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.