These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 29221936)
1. Volumetric measurement of hepatic tumors: Accuracy of manual contouring using CT with volumetric pathology as the reference method. Pupulim LF; Ronot M; Paradis V; Chemouny S; Vilgrain V Diagn Interv Imaging; 2018 Feb; 99(2):83-89. PubMed ID: 29221936 [TBL] [Abstract][Full Text] [Related]
2. Hepatic tumors: region-of-interest versus volumetric analysis for quantification of attenuation at CT. Chalian H; Tochetto SM; Töre HG; Rezai P; Yaghmai V Radiology; 2012 Mar; 262(3):853-61. PubMed ID: 22357887 [TBL] [Abstract][Full Text] [Related]
3. Validation of a semiautomated liver segmentation method using CT for accurate volumetry. Gotra A; Chartrand G; Massicotte-Tisluck K; Morin-Roy F; Vandenbroucke-Menu F; de Guise JA; Tang A Acad Radiol; 2015 Sep; 22(9):1088-98. PubMed ID: 25907454 [TBL] [Abstract][Full Text] [Related]
4. Approximation of head and neck cancer volumes in contrast enhanced CT. Dejaco D; Url C; Schartinger VH; Haug AK; Fischer N; Riedl D; Posch A; Riechelmann H; Widmann G Cancer Imaging; 2015 Sep; 15():16. PubMed ID: 26419914 [TBL] [Abstract][Full Text] [Related]
5. Comparison of semi-automatic volumetric VX2 hepatic tumor segmentation from cone beam CT and multi-detector CT with histology in rabbit models. Pellerin O; Lin M; Bhagat N; Ardon R; Mory B; Geschwind JF Acad Radiol; 2013 Jan; 20(1):115-21. PubMed ID: 22947274 [TBL] [Abstract][Full Text] [Related]
6. Semiautomatic volumetric tumor segmentation for hepatocellular carcinoma: comparison between C-arm cone beam computed tomography and MRI. Tacher V; Lin M; Chao M; Gjesteby L; Bhagat N; Mahammedi A; Ardon R; Mory B; Geschwind JF Acad Radiol; 2013 Apr; 20(4):446-52. PubMed ID: 23498985 [TBL] [Abstract][Full Text] [Related]
7. Liver lesion segmentation in MSCT: effect of slice thickness on segmentation quality, measurement precision and interobserver variability. Puesken M; Buerke B; Fortkamp R; Koch R; Seifarth H; Heindel W; Wessling J Rofo; 2011 Apr; 183(4):372-80. PubMed ID: 21246480 [TBL] [Abstract][Full Text] [Related]
8. Volumetric analysis of liver metastases in computed tomography with the fuzzy C-means algorithm. Yim PJ; Vora AV; Raghavan D; Prasad R; McAullife M; Ohman-Strickland P; Nosher JL J Comput Assist Tomogr; 2006; 30(2):212-20. PubMed ID: 16628034 [TBL] [Abstract][Full Text] [Related]
9. Impact of slice thickness on semi-automated measurements for volume and whole-tumor attenuation of colorectal hepatic metastases in multislice computed tomography. Rao SX; Meng T; Zhang LJ; Zeng MS Acta Radiol; 2013 Oct; 54(8):863-8. PubMed ID: 23761557 [TBL] [Abstract][Full Text] [Related]
10. Effect of kernels used for the reconstruction of MDCT datasets on the semi-automated segmentation and volumetry of liver lesions. Pinto dos Santos D; Kloeckner R; Wunder K; Bornemann L; Düber C; Mildenberger P Rofo; 2014 Aug; 186(8):780-4. PubMed ID: 24458377 [TBL] [Abstract][Full Text] [Related]
11. Liver Graft Volume Estimation by Manual Volumetry and Software-Aided Interactive Volumetry: Which is Better? Bozkurt B; Emek E; Arikan T; Ceyhan O; Yazici P; Sahin T; Mammadov E; Serin A; Gurcan NI; Yuzer Y; Tokat Y Transplant Proc; 2019 Sep; 51(7):2387-2390. PubMed ID: 31324483 [TBL] [Abstract][Full Text] [Related]
12. Volume measurement of liver metastases using multidetector computed tomography: comparison of lesion diameter and volume segmentation - a phantom study. Rothe JH; Steffen IG; Lehmkuhl L; Grieser C; Mussler A; Schnapauff D; Stelter L; Denecke T Rofo; 2010 Dec; 182(12):1082-90. PubMed ID: 21104596 [TBL] [Abstract][Full Text] [Related]
13. Intraobserver and Interobserver Agreement in the Evaluation of Tumor Vascularization With Computed Tomography Perfusion in Cirrhotic Patients With Hepatocellular Carcinoma. Ippolito D; Casiraghi AS; Talei Franzesi C; Bonaffini PA; Fior D; Sironi S J Comput Assist Tomogr; 2016; 40(1):152-9. PubMed ID: 26484957 [TBL] [Abstract][Full Text] [Related]
14. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry? van Heeswijk MM; Lambregts DM; van Griethuysen JJ; Oei S; Rao SX; de Graaff CA; Vliegen RF; Beets GL; Papanikolaou N; Beets-Tan RG Int J Radiat Oncol Biol Phys; 2016 Mar; 94(4):824-31. PubMed ID: 26972655 [TBL] [Abstract][Full Text] [Related]
15. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study. Chae SY; Suh S; Ryoo I; Park A; Noh KJ; Shim H; Seol HY Neuroradiology; 2017 May; 59(5):461-469. PubMed ID: 28341992 [TBL] [Abstract][Full Text] [Related]
16. Renal cortical volume measured using automatic contouring software for computed tomography and its relationship with BMI, age and renal function. Muto NS; Kamishima T; Harris AA; Kato F; Onodera Y; Terae S; Shirato H Eur J Radiol; 2011 Apr; 78(1):151-6. PubMed ID: 19914788 [TBL] [Abstract][Full Text] [Related]
17. Lung, liver and lymph node metastases in follow-up MSCT: comprehensive volumetric assessment of lesion size changes. Wulff AM; Bolte H; Fischer S; Freitag-Wolf S; Soza G; Tietjen C; Biederer J; Heller M; Fabel M Rofo; 2012 Sep; 184(9):820-8. PubMed ID: 22872601 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of three-dimensional virtual surgical planning in living liver donors. Yoon JH; Lee JM; Jun JH; Suh KS; Coulon P; Han JK; Choi BI Abdom Imaging; 2015 Mar; 40(3):510-20. PubMed ID: 25173793 [TBL] [Abstract][Full Text] [Related]
19. Semiautomated segmentation for volumetric analysis of intratumoral ethiodol uptake and subsequent tumor necrosis after chemoembolization. Monsky WL; Kim I; Loh S; Li CS; Greasby TA; Deutsch LS; Badawi RD AJR Am J Roentgenol; 2010 Nov; 195(5):1220-30. PubMed ID: 20966331 [TBL] [Abstract][Full Text] [Related]