These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 29221989)

  • 1. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives.
    Filipe HAL; Sousa C; Marquês JT; Vila-Viçosa D; de Granada-Flor A; Viana AS; Santos MSCS; Machuqueiro M; de Almeida RFM
    Free Radic Biol Med; 2018 Feb; 115():232-245. PubMed ID: 29221989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosmarinic acid and its esters inhibit membrane cholesterol domain formation through an antioxidant mechanism based, in nonlinear fashion, on alkyl chain length.
    Sherratt SCR; Villeneuve P; Durand E; Mason RP
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):550-555. PubMed ID: 30582915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups.
    Simanaviciute D; Klimaviciute R; Rutkaite R
    Int J Biol Macromol; 2017 Feb; 95():788-795. PubMed ID: 27932260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation of bovine lactoferrin with selected phenolic acids via noncovalent interactions: Binding mechanism and altered functionality.
    Wang C; Lu Y; Xia B; Li X; Huang X; Dong C
    J Dairy Sci; 2024 Jul; 107(7):4189-4204. PubMed ID: 38369115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane.
    Murthy AV; Guyomarc'h F; Lopez C
    Langmuir; 2016 Jul; 32(26):6757-65. PubMed ID: 27300157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydration of Lipid Membranes Drives Redistribution of Cholesterol Between Lateral Domains.
    Orlikowska-Rzeznik H; Krok E; Domanska M; Setny P; Lągowska A; Chattopadhyay M; Piatkowski L
    J Phys Chem Lett; 2024 Apr; 15(16):4515-4522. PubMed ID: 38634827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C; Furlong J; Burgos P; Johnston LJ
    Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study.
    Sinha M; Mishra S; Joshi PG
    Eur Biophys J; 2003 Jul; 32(4):381-91. PubMed ID: 12851796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations suggest a key role of membranous nanodomains in biliary lipid secretion.
    Eckstein J; Berndt N; Holzhütter HG
    PLoS Comput Biol; 2015 Feb; 11(2):e1004033. PubMed ID: 25692493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstituting ring-rafts in bud-mimicking topography of model membranes.
    Ryu YS; Lee IH; Suh JH; Park SC; Oh S; Jordan LR; Wittenberg NJ; Oh SH; Jeon NL; Lee B; Parikh AN; Lee SD
    Nat Commun; 2014 Jul; 5():4507. PubMed ID: 25058275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroporation of heterogeneous lipid membranes.
    Reigada R
    Biochim Biophys Acta; 2014 Mar; 1838(3):814-21. PubMed ID: 24144543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of rosmarinic acid biosynthesis.
    Petersen M; Abdullah Y; Benner J; Eberle D; Gehlen K; Hücherig S; Janiak V; Kim KH; Sander M; Weitzel C; Wolters S
    Phytochemistry; 2009; 70(15-16):1663-79. PubMed ID: 19560175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.