BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 29221989)

  • 1. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives.
    Filipe HAL; Sousa C; Marquês JT; Vila-Viçosa D; de Granada-Flor A; Viana AS; Santos MSCS; Machuqueiro M; de Almeida RFM
    Free Radic Biol Med; 2018 Feb; 115():232-245. PubMed ID: 29221989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosmarinic acid and its esters inhibit membrane cholesterol domain formation through an antioxidant mechanism based, in nonlinear fashion, on alkyl chain length.
    Sherratt SCR; Villeneuve P; Durand E; Mason RP
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):550-555. PubMed ID: 30582915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups.
    Simanaviciute D; Klimaviciute R; Rutkaite R
    Int J Biol Macromol; 2017 Feb; 95():788-795. PubMed ID: 27932260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation of bovine lactoferrin with selected phenolic acids via noncovalent interactions: Binding mechanism and altered functionality.
    Wang C; Lu Y; Xia B; Li X; Huang X; Dong C
    J Dairy Sci; 2024 Jul; 107(7):4189-4204. PubMed ID: 38369115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane.
    Murthy AV; Guyomarc'h F; Lopez C
    Langmuir; 2016 Jul; 32(26):6757-65. PubMed ID: 27300157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydration of Lipid Membranes Drives Redistribution of Cholesterol Between Lateral Domains.
    Orlikowska-Rzeznik H; Krok E; Domanska M; Setny P; Lągowska A; Chattopadhyay M; Piatkowski L
    J Phys Chem Lett; 2024 Apr; 15(16):4515-4522. PubMed ID: 38634827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C; Furlong J; Burgos P; Johnston LJ
    Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study.
    Sinha M; Mishra S; Joshi PG
    Eur Biophys J; 2003 Jul; 32(4):381-91. PubMed ID: 12851796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations suggest a key role of membranous nanodomains in biliary lipid secretion.
    Eckstein J; Berndt N; Holzhütter HG
    PLoS Comput Biol; 2015 Feb; 11(2):e1004033. PubMed ID: 25692493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstituting ring-rafts in bud-mimicking topography of model membranes.
    Ryu YS; Lee IH; Suh JH; Park SC; Oh S; Jordan LR; Wittenberg NJ; Oh SH; Jeon NL; Lee B; Parikh AN; Lee SD
    Nat Commun; 2014 Jul; 5():4507. PubMed ID: 25058275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroporation of heterogeneous lipid membranes.
    Reigada R
    Biochim Biophys Acta; 2014 Mar; 1838(3):814-21. PubMed ID: 24144543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of rosmarinic acid biosynthesis.
    Petersen M; Abdullah Y; Benner J; Eberle D; Gehlen K; Hücherig S; Janiak V; Kim KH; Sander M; Weitzel C; Wolters S
    Phytochemistry; 2009; 70(15-16):1663-79. PubMed ID: 19560175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.