These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29222076)

  • 1. Adverse Drug Event Discovery Using Biomedical Literature: A Big Data Neural Network Adventure.
    P Tafti A; Badger J; LaRose E; Shirzadi E; Mahnke A; Mayer J; Ye Z; Page D; Peissig P
    JMIR Med Inform; 2017 Dec; 5(4):e51. PubMed ID: 29222076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse Drug Event Prediction Using Noisy Literature-Derived Knowledge Graphs: Algorithm Development and Validation.
    Dasgupta S; Jayagopal A; Jun Hong AL; Mariappan R; Rajan V
    JMIR Med Inform; 2021 Oct; 9(10):e32730. PubMed ID: 34694230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Authenticity and credibility aware detection of adverse drug events from social media.
    Hoang T; Liu J; Pratt N; Zheng VW; Chang KC; Roughead E; Li J
    Int J Med Inform; 2018 Dec; 120():101-115. PubMed ID: 30409335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Authenticity and credibility aware detection of adverse drug events from social media.
    Hoang T; Liu J; Pratt N; Zheng VW; Chang KC; Roughead E; Li J
    Int J Med Inform; 2018 Dec; 120():157-171. PubMed ID: 30409341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ensemble method for extracting adverse drug events from social media.
    Liu J; Zhao S; Zhang X
    Artif Intell Med; 2016 Jun; 70():62-76. PubMed ID: 27431037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligent Context-Aware Machine-Learning Tool to Detect Adverse Drug Events from Social Media Platforms.
    Roosan D; Law AV; Roosan MR; Li Y
    J Med Toxicol; 2022 Oct; 18(4):311-320. PubMed ID: 36097239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SparkText: Biomedical Text Mining on Big Data Framework.
    Ye Z; Tafti AP; He KY; Wang K; He MM
    PLoS One; 2016; 11(9):e0162721. PubMed ID: 27685652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.
    Liu J; Zhao S; Wang G
    Artif Intell Med; 2018 Jan; 84():34-49. PubMed ID: 29111222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iktishaf+: A Big Data Tool with Automatic Labeling for Road Traffic Social Sensing and Event Detection Using Distributed Machine Learning.
    Alomari E; Katib I; Albeshri A; Yigitcanlar T; Mehmood R
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter.
    Magge A; Tutubalina E; Miftahutdinov Z; Alimova I; Dirkson A; Verberne S; Weissenbacher D; Gonzalez-Hernandez G
    J Am Med Inform Assoc; 2021 Sep; 28(10):2184-2192. PubMed ID: 34270701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Context-Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation.
    Afzal M; Alam F; Malik KM; Malik GM
    J Med Internet Res; 2020 Oct; 22(10):e19810. PubMed ID: 33095174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
    Eshleman R; Singh R
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Markov Logic Networks for Adverse Drug Event Extraction from Text.
    Natarajan S; Bangera V; Khot T; Picado J; Wazalwar A; Costa VS; Page D; Caldwell M
    Knowl Inf Syst; 2017 May; 51(2):435-457. PubMed ID: 29123330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADENet: a novel network-based inference method for prediction of drug adverse events.
    Yu Z; Wu Z; Li W; Liu G; Tang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filtering big data from social media--Building an early warning system for adverse drug reactions.
    Yang M; Kiang M; Shang W
    J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.
    Munkhdalai T; Liu F; Yu H
    JMIR Public Health Surveill; 2018 Apr; 4(2):e29. PubMed ID: 29695376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing large language models to detect adverse drug events in posts on x.
    Deng Y; Xing Y; Quach J; Chen X; Wu X; Zhang Y; Moureaud C; Yu M; Zhao Y; Wang L; Zhong S
    J Biopharm Stat; 2024 Sep; ():1-12. PubMed ID: 39300965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining severe drug-drug interaction adverse events using Semantic Web technologies: a case study.
    Jiang G; Liu H; Solbrig HR; Chute CG
    BioData Min; 2015; 8():12. PubMed ID: 25829948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Behavior Analysis Using Intelligent Big Data Analytics.
    Tariq MU; Babar M; Poulin M; Khattak AS; Alshehri MD; Kaleem S
    Front Psychol; 2021; 12():686610. PubMed ID: 34295289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.