BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29222424)

  • 1. Structural insight into a CE15 esterase from the marine bacterial metagenome.
    De Santi C; Gani OA; Helland R; Williamson A
    Sci Rep; 2017 Dec; 7(1):17278. PubMed ID: 29222424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.
    De Santi C; Willassen NP; Williamson A
    PLoS One; 2016; 11(7):e0159345. PubMed ID: 27433797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and biochemical studies of the glucuronoyl esterase
    Mazurkewich S; Poulsen JN; Lo Leggio L; Larsbrink J
    J Biol Chem; 2019 Dec; 294(52):19978-19987. PubMed ID: 31740581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional investigation of a fungal member of carbohydrate esterase family 15 with potential specificity for rare xylans.
    Mazurkewich S; Scholzen KC; Brusch RH; Poulsen JCN; Theibich Y; Hüttner S; Olsson L; Larsbrink J; Lo Leggio L
    Acta Crystallogr D Struct Biol; 2023 Jun; 79(Pt 6):545-555. PubMed ID: 37227091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Subfamily Esterase with a Homoserine Transacetylase-like Fold but No Transferase Activity.
    Li PY; Yao QQ; Wang P; Zhang Y; Li Y; Zhang YQ; Hao J; Zhou BC; Chen XL; Shi M; Zhang YZ; Zhang XY
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function analyses reveal that a glucuronoyl esterase from
    Arnling Bååth J; Mazurkewich S; Poulsen JN; Olsson L; Lo Leggio L; Larsbrink J
    J Biol Chem; 2019 Apr; 294(16):6635-6644. PubMed ID: 30814248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression and characterization of a glucuronoyl esterase from the fungus Neurospora crassa: identification of novel consensus sequences containing the catalytic triad.
    Huynh HH; Arioka M
    J Gen Appl Microbiol; 2016 Nov; 62(5):217-224. PubMed ID: 27600355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural basis of fungal glucuronoyl esterase activity on natural substrates.
    Ernst HA; Mosbech C; Langkilde AE; Westh P; Meyer AS; Agger JW; Larsen S
    Nat Commun; 2020 Feb; 11(1):1026. PubMed ID: 32094331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insights into a Novel Esterase from the East Pacific Rise and Its Improved Thermostability by a Semirational Design.
    Zhu C; Chen Y; Isupov MN; Littlechild JA; Sun L; Liu X; Wang Q; Gong H; Dong P; Zhang N; Wu Y
    J Agric Food Chem; 2021 Jan; 69(3):1079-1090. PubMed ID: 33445864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical characterization of a metagenome-derived esterase with a long N-terminal extension.
    Okano H; Hong X; Kanaya E; Angkawidjaja C; Kanaya S
    Protein Sci; 2015 Jan; 24(1):93-104. PubMed ID: 25348365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Characterization and Directed Evolution of a Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate Esterase 7 Family.
    Adesioye FA; Makhalanyane TP; Vikram S; Sewell BT; Schubert WD; Cowan DA
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29453256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucuronoyl esterases - enzymes to decouple lignin and carbohydrates and enable better utilization of renewable plant biomass.
    Larsbrink J; Lo Leggio L
    Essays Biochem; 2023 Apr; 67(3):493-503. PubMed ID: 36651189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Glucuronoyl Esterases: 10 Years after Discovery.
    Biely P
    Appl Environ Microbiol; 2016 Dec; 82(24):7014-7018. PubMed ID: 27694239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization and molecular docking analysis of novel esterases from Sphingobium chungbukense DJ77.
    Shin WR; Um HJ; Kim YC; Kim SC; Cho BK; Ahn JY; Min J; Kim YH
    Int J Biol Macromol; 2021 Jan; 168():403-411. PubMed ID: 33321136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of a novel glucuronoyl esterase from Myceliophthora thermophila gives new insights into its role as a potential biocatalyst.
    Charavgi MD; Dimarogona M; Topakas E; Christakopoulos P; Chrysina ED
    Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):63-73. PubMed ID: 23275164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient activity screening of new glucuronoyl esterases using a pNP-based assay.
    Madsen MS; Martins PA; Agger JW
    Enzyme Microb Technol; 2024 Aug; 178():110444. PubMed ID: 38581869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two novel deep-sea sediment metagenome-derived esterases: residue 199 is the determinant of substrate specificity and preference.
    Huo YY; Jian SL; Cheng H; Rong Z; Cui HL; Xu XW
    Microb Cell Fact; 2018 Jan; 17(1):16. PubMed ID: 29382330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications.
    Maester TC; Pereira MR; Machado Sierra EG; Balan A; de Macedo Lemos EG
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5815-27. PubMed ID: 26915995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina.
    Pokkuluri PR; Duke NE; Wood SJ; Cotta MA; Li XL; Biely P; Schiffer M
    Proteins; 2011 Aug; 79(8):2588-92. PubMed ID: 21661060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.