These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29222468)

  • 21. A genome-wide association study of seed composition traits in wild soybean (Glycine soja).
    Leamy LJ; Zhang H; Li C; Chen CY; Song BH
    BMC Genomics; 2017 Jan; 18(1):18. PubMed ID: 28056769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean.
    Wen Z; Tan R; Yuan J; Bales C; Du W; Zhang S; Chilvers MI; Schmidt C; Song Q; Cregan PB; Wang D
    BMC Genomics; 2014 Sep; 15(1):809. PubMed ID: 25249039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development and use of a molecular model for soybean maturity groups.
    Langewisch T; Lenis J; Jiang GL; Wang D; Pantalone V; Bilyeu K
    BMC Plant Biol; 2017 May; 17(1):91. PubMed ID: 28558691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding.
    Haupt M; Schmid K
    Plant Cell Environ; 2020 Jun; 43(6):1421-1436. PubMed ID: 32227644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China.
    Liu L; Song W; Wang L; Sun X; Qi Y; Wu T; Sun S; Jiang B; Wu C; Hou W; Ni Z; Han T
    PLoS One; 2020; 15(7):e0235397. PubMed ID: 32628713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics.
    Dong L; Fang C; Cheng Q; Su T; Kou K; Kong L; Zhang C; Li H; Hou Z; Zhang Y; Chen L; Yue L; Wang L; Wang K; Li Y; Gan Z; Yuan X; Weller JL; Lu S; Kong F; Liu B
    Nat Commun; 2021 Sep; 12(1):5445. PubMed ID: 34521854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.
    Huang J; Guo N; Li Y; Sun J; Hu G; Zhang H; Li Y; Zhang X; Zhao J; Xing H; Qiu L
    BMC Genet; 2016 Jun; 17(1):85. PubMed ID: 27316671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding.
    Pascual L; Ruiz M; López-Fernández M; Pérez-Peña H; Benavente E; Vázquez JF; Sansaloni C; Giraldo P
    BMC Genomics; 2020 Feb; 21(1):122. PubMed ID: 32019507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus.
    Bouchet S; Servin B; Bertin P; Madur D; Combes V; Dumas F; Brunel D; Laborde J; Charcosset A; Nicolas S
    PLoS One; 2013; 8(8):e71377. PubMed ID: 24023610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic analyses provide insights into peach local adaptation and responses to climate change.
    Li Y; Cao K; Li N; Zhu G; Fang W; Chen C; Wang X; Guo J; Wang Q; Ding T; Wang J; Guan L; Wang J; Liu K; Guo W; Arús P; Huang S; Fei Z; Wang L
    Genome Res; 2021 Apr; 31(4):592-606. PubMed ID: 33687945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting seed pigmentation-associated genomic loci and genes by employing dual approaches of reference-based and k-mer-based GWAS with 438 Glycine accessions.
    Kim JH; Park JS; Lee CY; Jeong MG; Xu JL; Choi Y; Jung HW; Choi HK
    PLoS One; 2020; 15(12):e0243085. PubMed ID: 33259564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic consequences of selection and genome-wide association mapping in soybean.
    Wen Z; Boyse JF; Song Q; Cregan PB; Wang D
    BMC Genomics; 2015 Sep; 16(1):671. PubMed ID: 26334313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS.
    Li YH; Li D; Jiao YQ; Schnable JC; Li YF; Li HH; Chen HZ; Hong HL; Zhang T; Liu B; Liu ZX; You QB; Tian Y; Guo Y; Guan RX; Zhang LJ; Chang RZ; Zhang Z; Reif J; Zhou XA; Schnable PS; Qiu LJ
    Plant Biotechnol J; 2020 Feb; 18(2):389-401. PubMed ID: 31278885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of QTN and Candidate Gene for Seed-flooding Tolerance in Soybean [
    Yu Z; Chang F; Lv W; Sharmin RA; Wang Z; Kong J; Bhat JA; Zhao T
    Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31766569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil.
    Wei W; Mesquita ACO; Figueiró AA; Wu X; Manjunatha S; Wickland DP; Hudson ME; Juliatti FC; Clough SJ
    BMC Genomics; 2017 Nov; 18(1):849. PubMed ID: 29115920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce.
    Scalfi M; Mosca E; Di Pierro EA; Troggio M; Vendramin GG; Sperisen C; La Porta N; Neale DB
    PLoS One; 2014; 9(12):e115499. PubMed ID: 25551624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS.
    Li J; Chen GB; Rasheed A; Li D; Sonder K; Zavala Espinosa C; Wang J; Costich DE; Schnable PS; Hearne SJ; Li H
    Mol Ecol; 2019 Aug; 28(15):3544-3560. PubMed ID: 31287919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.
    Friesen ML; von Wettberg EJ; Badri M; Moriuchi KS; Barhoumi F; Chang PL; Cuellar-Ortiz S; Cordeiro MA; Vu WT; Arraouadi S; Djébali N; Zribi K; Badri Y; Porter SS; Aouani ME; Cook DR; Strauss SY; Nuzhdin SV
    BMC Genomics; 2014 Dec; 15(1):1160. PubMed ID: 25534372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The importance of slow canopy wilting in drought tolerance in soybean.
    Ye H; Song L; Schapaugh WT; Ali ML; Sinclair TR; Riar MK; Raymond RN; Li Y; Vuong T; Valliyodan B; Pizolato Neto A; Klepadlo M; Song Q; Shannon JG; Chen P; Nguyen HT
    J Exp Bot; 2020 Jan; 71(2):642-652. PubMed ID: 30980084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.