BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29222497)

  • 1. Computational insights for the hydride transfer and distinctive roles of key residues in cholesterol oxidase.
    Yu LJ; Golden E; Chen N; Zhao Y; Vrielink A; Karton A
    Sci Rep; 2017 Dec; 7(1):17265. PubMed ID: 29222497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the role of His447 in the reaction catalyzed by cholesterol oxidase.
    Kass IJ; Sampson NS
    Biochemistry; 1998 Dec; 37(51):17990-8000. PubMed ID: 9922167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants.
    Yue QK; Kass IJ; Sampson NS; Vrielink A
    Biochemistry; 1999 Apr; 38(14):4277-86. PubMed ID: 10194345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism.
    Cao Y; Han S; Yu L; Qian H; Chen JZ
    J Phys Chem B; 2014 May; 118(20):5406-17. PubMed ID: 24801764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases.
    Li J; Vrielink A; Brick P; Blow DM
    Biochemistry; 1993 Nov; 32(43):11507-15. PubMed ID: 8218217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of a flavoenzyme active site: the reaction catalyzed by cholesterol oxidase.
    Sampson NS
    Antioxid Redox Signal; 2001 Oct; 3(5):839-46. PubMed ID: 11761331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined quantum mechanical and molecular mechanical simulations of one- and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase.
    Bhattacharyya S; Stankovich MT; Truhlar DG; Gao J
    J Phys Chem A; 2007 Jul; 111(26):5729-42. PubMed ID: 17567113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase.
    Lyubimov AY; Chen L; Sampson NS; Vrielink A
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1222-31. PubMed ID: 19923719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates.
    Qin HM; Zhu Z; Ma Z; Xu P; Guo Q; Li S; Wang JW; Mao S; Liu F; Lu F
    Sci Rep; 2017 Nov; 7(1):16375. PubMed ID: 29180806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.
    Golden E; Yu LJ; Meilleur F; Blakeley MP; Duff AP; Karton A; Vrielink A
    Sci Rep; 2017 Jan; 7():40517. PubMed ID: 28098177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational site-directed mutagenesis studies of the role of the hydrophobic triad on substrate binding in cholesterol oxidase.
    Harb LH; Arooj M; Vrielink A; Mancera RL
    Proteins; 2017 Sep; 85(9):1645-1655. PubMed ID: 28508424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a catalytically inactive cholesterol oxidase mutant: investigation of the interplay between active site-residues glutamate 361 and histidine 447.
    Yin Y; Liu P; Anderson RG; Sampson NS
    Arch Biochem Biophys; 2002 Jun; 402(2):235-42. PubMed ID: 12051668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization.
    Golden E; Karton A; Vrielink A
    Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3155-66. PubMed ID: 25478834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidation of Enzymatic Mechanism of Phenazine Biosynthetic Protein PhzF Using QM/MM and MD Simulations.
    Liu F; Zhao YL; Wang X; Hu H; Peng H; Wang W; Wang JF; Zhang X
    PLoS One; 2015; 10(9):e0139081. PubMed ID: 26414009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of a hydrogen bond between asparagine 485 and the pi system of FAD modulates the redox potential in the reaction catalyzed by cholesterol oxidase.
    Yin Y; Sampson NS; Vrielink A; Lario PI
    Biochemistry; 2001 Nov; 40(46):13779-87. PubMed ID: 11705367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661.
    Karasulu B; Patil M; Thiel W
    J Am Chem Soc; 2013 Sep; 135(36):13400-13. PubMed ID: 23988016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-atomic resolution crystal structure of cholesterol oxidase: what atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity.
    Lario PI; Sampson N; Vrielink A
    J Mol Biol; 2003 Mar; 326(5):1635-50. PubMed ID: 12595270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol oxidase: biochemistry and structural features.
    Vrielink A; Ghisla S
    FEBS J; 2009 Dec; 276(23):6826-43. PubMed ID: 19843169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.