These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Kertesz MA; Thai M Appl Microbiol Biotechnol; 2018 Feb; 102(4):1639-1650. PubMed ID: 29362825 [TBL] [Abstract][Full Text] [Related]
3. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus. McGee CF; Byrne H; Irvine A; Wilson J Mycologia; 2017; 109(3):475-484. PubMed ID: 28759322 [TBL] [Abstract][Full Text] [Related]
4. Bacterial Community Patterns in the Agaricus bisporus Cultivation System, from Compost Raw Materials to Mushroom Caps. Vieira FR; Pecchia JA Microb Ecol; 2022 Jul; 84(1):20-32. PubMed ID: 34383127 [TBL] [Abstract][Full Text] [Related]
5. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production. Wang L; Mao J; Zhao H; Li M; Wei Q; Zhou Y; Shao H J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1249-60. PubMed ID: 27337959 [TBL] [Abstract][Full Text] [Related]
6. Physiologic response of Agaricus subrufescens using different casing materials and practices applied in the cultivation of Agaricus bisporus. Dias ES; Zied DC; Rinker DL Fungal Biol; 2013; 117(7-8):569-75. PubMed ID: 23931122 [TBL] [Abstract][Full Text] [Related]
7. Effect of spent mushroom compost tea on mycelial growth and yield of button mushroom (Agaricus bisporus). Gea FJ; Santos M; Diánez F; Tello JC; Navarro MJ World J Microbiol Biotechnol; 2012 Aug; 28(8):2765-9. PubMed ID: 22806203 [TBL] [Abstract][Full Text] [Related]
8. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation. Vieira FR; Pecchia JA Microb Ecol; 2018 Feb; 75(2):318-330. PubMed ID: 28730353 [TBL] [Abstract][Full Text] [Related]
9. Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. Llarena-Hernández CR; Largeteau ML; Ferrer N; Regnault-Roger C; Savoie JM J Sci Food Agric; 2014 Jan; 94(1):77-84. PubMed ID: 23633302 [TBL] [Abstract][Full Text] [Related]
10. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Pontes MVA; Patyshakuliyeva A; Post H; Jurak E; Hildén K; Altelaar M; Heck A; Kabel MA; de Vries RP; Mäkelä MR Fungal Genet Biol; 2018 Mar; 112():12-20. PubMed ID: 29277563 [TBL] [Abstract][Full Text] [Related]
11. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Mamiro DP; Royse DJ Bioresour Technol; 2008 May; 99(8):3205-12. PubMed ID: 17761414 [TBL] [Abstract][Full Text] [Related]
12. Influence of Agaricus bisporus establishment and fungicidal treatments on casing soil metataxonomy during mushroom cultivation. Tello Martín ML; Lavega R; Carrasco JC; Pérez M; Pérez-Pulido AJ; Thon M; Pérez Benito E BMC Genomics; 2022 Jun; 23(1):442. PubMed ID: 35701764 [TBL] [Abstract][Full Text] [Related]
13. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Carrasco J; García-Delgado C; Lavega R; Tello ML; De Toro M; Barba-Vicente V; Rodríguez-Cruz MS; Sánchez-Martín MJ; Pérez M; Preston GM Microb Biotechnol; 2020 Nov; 13(6):1933-1947. PubMed ID: 32716608 [TBL] [Abstract][Full Text] [Related]
14. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts. Wang Q; Juan J; Xiao T; Zhang J; Chen H; Song X; Chen M; Huang J Appl Microbiol Biotechnol; 2021 May; 105(9):3811-3823. PubMed ID: 33877414 [TBL] [Abstract][Full Text] [Related]
15. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Zhang HL; Wei JK; Wang QH; Yang R; Gao XJ; Sang YX; Cai PP; Zhang GQ; Chen QJ Sci Rep; 2019 Feb; 9(1):1151. PubMed ID: 30718596 [TBL] [Abstract][Full Text] [Related]
16. Casing microbiome dynamics during button mushroom cultivation: implications for dry and wet bubble diseases. Carrasco J; Tello ML; de Toro M; Tkacz A; Poole P; Pérez-Clavijo M; Preston G Microbiology (Reading); 2019 Jun; 165(6):611-624. PubMed ID: 30994437 [TBL] [Abstract][Full Text] [Related]
18. Imidacloprid dissipation, metabolism and accumulation in Agaricus bisporus fruits, casing soil and compost and dietary risk assessment. Zhang Q; Wang X; Rao Q; Chen S; Song W Chemosphere; 2020 Sep; 254():126837. PubMed ID: 32339803 [TBL] [Abstract][Full Text] [Related]
19. Effects of spawn, supplement and phase II compost additions and time of re-casing second break compost on mushroom (Agaricus bisporus) yield and biological efficiency. Royse DJ; Chalupa W Bioresour Technol; 2009 Nov; 100(21):5277-82. PubMed ID: 19559602 [TBL] [Abstract][Full Text] [Related]
20. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus. Jurak E; Kabel MA; Gruppen H Carbohydr Polym; 2014 Jan; 101():281-8. PubMed ID: 24299775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]