These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29222659)

  • 21. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.
    Steely S; Amarasiriwardena D; Xing B
    Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of aging on the bioavailability of toluene sorbed to municipal solid waste components.
    Chen Y; Knappe DR; Barlaz MA
    Chemosphere; 2013 Jan; 90(2):251-9. PubMed ID: 22850276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite.
    Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM
    Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous sorption and catalytic oxidation of trivalent antimony by Canna indica derived biochars.
    Cui X; Ni Q; Lin Q; Khan KY; Li T; Khan MB; He Z; Yang X
    Environ Pollut; 2017 Oct; 229():394-402. PubMed ID: 28618363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fractionation and redox speciation of antimony in agricultural soils by hydride generation--atomic fluorescence spectrometry and stability of Sb(III) and Sb(V) during extraction with different extractant solutions.
    Fuentes E; Pinochet H; Potin-Gautier M; De Graegori I
    J AOAC Int; 2004; 87(1):60-7. PubMed ID: 15084088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides.
    Shi Z; Peng S; Wang P; Sun Q; Wang Y; Lu G; Dang Z
    Environ Sci Process Impacts; 2018 Dec; 20(12):1691-1696. PubMed ID: 30283955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior.
    Nakamaru Y; Tagami K; Uchida S
    Environ Pollut; 2006 May; 141(2):321-6. PubMed ID: 16246477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination.
    Cidu R; Biddau R; Dore E; Vacca A; Marini L
    Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorption of arsenic by composts and biochars derived from the organic fraction of municipal solid wastes: Kinetic, isotherm and oral bioaccessibility study.
    Lima JZ; Ferreira da Silva E; Patinha C; Durães N; Vieira EM; Rodrigues VGS
    Environ Res; 2022 Mar; 204(Pt A):111988. PubMed ID: 34480948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the sorption capacity of basic, acid, direct and reactive dyes by compost in batch conditions.
    Al-Zawahreh K; Barral MT; Al-Degs Y; Paradelo R
    J Environ Manage; 2021 Sep; 294():113005. PubMed ID: 34130138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimony(III) binding to humic substances: influence of pH and type of humic acid.
    Buschmann J; Sigg L
    Environ Sci Technol; 2004 Sep; 38(17):4535-41. PubMed ID: 15461160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimony leaching from uncarbonated and carbonated MSWI bottom ash.
    Cornelis G; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2006 Oct; 137(3):1284-92. PubMed ID: 16730886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores.
    Hu X; Guo X; He M; Li S
    J Environ Sci (China); 2016 Jun; 44():171-179. PubMed ID: 27266313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization and phytoavailability of antimony (Sb) in contaminated agricultural soils amended with composted manure.
    Pervaiz A; Zhong Q; Rehman SAU; Ma C; Jiao Y; He M
    Sci Total Environ; 2023 Jan; 856(Pt 2):159213. PubMed ID: 36206908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leonardite-derived humic substances are great adsorbents for cadmium.
    Meng F; Yuan G; Wei J; Bi D; Wang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23006-23014. PubMed ID: 28822093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations.
    Paradelo R; Barral MT
    Bioresour Technol; 2012 Jan; 104():810-3. PubMed ID: 22119314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.
    Cornelis G; Van Gerven T; Vandecasteele C
    Waste Manag; 2012 Feb; 32(2):278-86. PubMed ID: 22035902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Migration and leaching risk of extraneous antimony in three representative soils of China: lysimeter and batch experiments.
    Hou H; Yao N; Li JN; Wei Y; Zhao L; Zhang J; Li FS
    Chemosphere; 2013 Nov; 93(9):1980-8. PubMed ID: 23931906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.
    Hockmann K; Tandy S; Lenz M; Reiser R; Conesa HM; Keller M; Studer B; Schulin R
    Chemosphere; 2015 Sep; 134():536-43. PubMed ID: 25592464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of input material and operational performance on the physical and chemical properties of MSW compost.
    Montejo C; Costa C; Márquez MC
    J Environ Manage; 2015 Oct; 162():240-9. PubMed ID: 26254992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.