BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29222797)

  • 1. An In Vivo Compression Model of Spinal Cord Injury.
    Paterniti I; Esposito E; Cuzzocrea S
    Methods Mol Biol; 2018; 1727():379-384. PubMed ID: 29222797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord injury models: a review.
    Cheriyan T; Ryan DJ; Weinreb JH; Cheriyan J; Paul JC; Lafage V; Kirsch T; Errico TJ
    Spinal Cord; 2014 Aug; 52(8):588-95. PubMed ID: 24912546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury.
    Forgione N; Chamankhah M; Fehlings MG
    J Neurotrauma; 2017 Mar; 34(6):1227-1239. PubMed ID: 27931169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly reproducible mouse model of compression spinal cord injury.
    Marques SA; de Almeida FM; Mostacada K; Martinez AM
    Methods Mol Biol; 2014; 1162():149-56. PubMed ID: 24838965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute phase effects of ATP-MgCl2 on experimental spinal cord injury.
    Cakir E; Baykal S; Karahan SC; Kuzeyli K; Uydu H
    Neurosurg Rev; 2003 Jan; 26(1):67-70. PubMed ID: 12520320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage.
    Geremia NM; Hryciw T; Bao F; Streijger F; Okon E; Lee JHT; Weaver LC; Dekaban GA; Kwon BK; Brown A
    Exp Neurol; 2017 Sep; 295():125-134. PubMed ID: 28587875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of tetramethylpyrazine on microglia activation in spinal cord compression injury of mice.
    Shin JW; Moon JY; Seong JW; Song SH; Cheong YJ; Kang C; Sohn NW
    Am J Chin Med; 2013; 41(6):1361-76. PubMed ID: 24228606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal models of compression spinal cord injury.
    Ridlen R; McGrath K; Gorrie CA
    J Neurosci Res; 2022 Dec; 100(12):2201-2212. PubMed ID: 36121155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol paper: kainic acid excitotoxicity-induced spinal cord injury paraplegia in Sprague-Dawley rats.
    Anjum A; Cheah YJ; Yazid MD; Daud MF; Idris J; Ng MH; Naicker AS; Ismail OH; Athi Kumar RK; Tan GC; Wong YP; Mahadi MK; Lokanathan Y
    Biol Res; 2022 Dec; 55(1):38. PubMed ID: 36494836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.
    Lukovic D; Moreno-Manzano V; Lopez-Mocholi E; Rodriguez-Jiménez FJ; Jendelova P; Sykova E; Oria M; Stojkovic M; Erceg S
    Sci Rep; 2015 Apr; 5():9640. PubMed ID: 25860664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibrated forceps model of spinal cord compression injury.
    McDonough A; Monterrubio A; Ariza J; Martínez-Cerdeño V
    J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of palmitoylethanolamide on release of mast cell peptidases and neurotrophic factors after spinal cord injury.
    Esposito E; Paterniti I; Mazzon E; Genovese T; Di Paola R; Galuppo M; Cuzzocrea S
    Brain Behav Immun; 2011 Aug; 25(6):1099-112. PubMed ID: 21354467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Progression of Acute Spinal Cord Injury Mechanisms in a Rat Model: Contusion, Dislocation, and Distraction.
    Mattucci S; Speidel J; Liu J; Tetzlaff W; Oxland TR
    J Neurotrauma; 2021 Aug; 38(15):2103-2121. PubMed ID: 33820470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression.
    Ziu M; Fletcher L; Savage JG; Jimenez DF; Digicaylioglu M; Bartanusz V
    Spine J; 2014 Feb; 14(2):353-60. PubMed ID: 24269082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraparenchymal microdialysis after acute spinal cord injury reveals differential metabolic responses to contusive versus compressive mechanisms of injury.
    Okon EB; Streijger F; Lee JH; Anderson LM; Russell AK; Kwon BK
    J Neurotrauma; 2013 Sep; 30(18):1564-76. PubMed ID: 23768189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell viability in three ex vivo rat models of spinal cord injury.
    Patar A; Dockery P; Howard L; McMahon SS
    J Anat; 2019 Feb; 234(2):244-251. PubMed ID: 30417349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 1. Clip design, behavioral outcomes, and histopathology.
    Joshi M; Fehlings MG
    J Neurotrauma; 2002 Feb; 19(2):175-90. PubMed ID: 11893021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary pathology following contusion, dislocation, and distraction spinal cord injuries.
    Choo AM; Liu J; Dvorak M; Tetzlaff W; Oxland TR
    Exp Neurol; 2008 Aug; 212(2):490-506. PubMed ID: 18561916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute spinal cord injury in the rat: comparison of three experimental techniques.
    Khan M; Griebel R
    Can J Neurol Sci; 1983 Aug; 10(3):161-5. PubMed ID: 6616346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.