BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29222918)

  • 1. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production.
    Ma YB; Zhu M; Yu CJ; Wang Y; Liu Y; Li ML; Sun YD; Zhao JS; Zhou GK
    Plant Biol (Stuttg); 2018 Mar; 20(2):357-364. PubMed ID: 29222918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains.
    Tang J; Li Y; Ma J; Cheng JJ
    Plant Biol (Stuttg); 2015 Sep; 17(5):1066-72. PubMed ID: 25950142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.
    Yin Y; Yu C; Yu L; Zhao J; Sun C; Ma Y; Zhou G
    Bioresour Technol; 2015; 187():84-90. PubMed ID: 25841186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive effects of duckweed polycultures on starch and protein accumulation.
    Li Y; Zhang F; Daroch M; Tang J
    Biosci Rep; 2016 Oct; 36(5):. PubMed ID: 27515418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Growth feature of biomass of Lemna aequinoctialis and Spirodela polyrrhiza in medium with nutrient character of wastewater].
    Chong YX; Hu HY; Qian Y
    Huan Jing Ke Xue; 2004 Nov; 25(6):59-64. PubMed ID: 15759882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol.
    Yu C; Sun C; Yu L; Zhu M; Xu H; Zhao J; Ma Y; Zhou G
    PLoS One; 2014; 9(12):e115023. PubMed ID: 25517893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The change of accumulation of heavy metal drive interspecific facilitation under copper and cold stress.
    Shi H; Duan M; Li C; Zhang Q; Liu C; Liang S; Guan Y; Kang X; Zhao Z; Xiao G
    Aquat Toxicol; 2020 Aug; 225():105550. PubMed ID: 32593114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production.
    Zhao Y; Fang Y; Jin Y; Huang J; Bao S; Fu T; He Z; Wang F; Wang M; Zhao H
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():82-90. PubMed ID: 24942851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growing duckweed for biofuel production: a review.
    Cui W; Cheng JJ
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():16-23. PubMed ID: 24985498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfamethoxazole removal and fuel-feedstock biomass production from wastewater in a phyto-Fenton process using duckweed culture.
    Toyama T; Kobayashi M; Rubiy Atno ; Morikawa M; Mori K
    Chemosphere; 2024 Aug; 361():142592. PubMed ID: 38866331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural variance in salt tolerance and induction of starch accumulation in duckweeds.
    Sree KS; Adelmann K; Garcia C; Lam E; Appenroth KJ
    Planta; 2015 Jun; 241(6):1395-404. PubMed ID: 25693515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of bioethanol from four species of duckweeds (
    Faizal A; Sembada AA; Priharto N
    Saudi J Biol Sci; 2021 Jan; 28(1):294-301. PubMed ID: 33424309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters.
    Toyama T; Kuroda M; Ogata Y; Hachiya Y; Quach A; Tokura K; Tanaka Y; Mori K; Morikawa M; Ike M
    Water Sci Technol; 2017 Sep; 76(5-6):1418-1428. PubMed ID: 28953468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China.
    Tang J; Zhang F; Cui W; Ma J
    Planta; 2014 Jun; 239(6):1299-307. PubMed ID: 24663442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1119-32. PubMed ID: 24933906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of environment and nutrient factors on the content of nitrogen and phosphorus in two duckweeds species: Spirodela polyrrhiza and Lemna aequinoctialis].
    Chong YX; Hu HY; Qian Y
    Huan Jing Ke Xue; 2005 Sep; 26(5):67-71. PubMed ID: 16366472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duckweed systems for eutrophic water purification through converting wastewater nutrients to high-starch biomass: comparative evaluation of three different genera (
    Chen G; Fang Y; Huang J; Zhao Y; Li Q; Lai F; Xu Y; Tian X; He K; Jin Y; Tan L; Zhao H
    RSC Adv; 2018 May; 8(32):17927-17937. PubMed ID: 35542060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH, initial Pb
    Tang J; Chen C; Chen L; Daroch M; Cui Y
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23864-23871. PubMed ID: 28868570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application.
    Liu Y; Chen X; Wang X; Fang Y; Huang M; Guo L; Zhang Y; Zhao H
    Sci Rep; 2018 Jun; 8(1):9544. PubMed ID: 29934519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers.
    Xue H; Xiao Y; Jin Y; Li X; Fang Y; Zhao H; Zhao Y; Guan J
    Mol Biol Rep; 2012 Jan; 39(1):547-54. PubMed ID: 21695427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.